

Design of experiments

Mikko Mäkelä

Aalto University, School of Chemical Engineering Department of Bioproducts and Biosystems Espoo, Finland

Session 2

Diagnostics

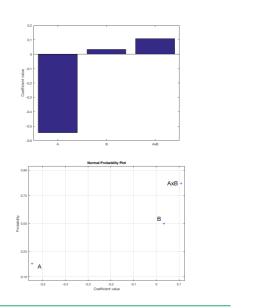
- o Coefficients
- o Random error assumption
- o Statistical distributions
- o ANOVA
- \circ R^2
- o Residuals

Research problem

An engineer is interested on the effect of temperature (A) and catalyst concentration (B) on the molecular weight of produced bio-oil. He performed a replicated 2^2 factorial design

Exp.	A (°C)	B (%)	MW (kg mol ⁻¹)
1	160	0.2	2.0, 2.2
2	320	0.2	0.85, 0.73
3	160	0.8	1.8, 2.1
4	320	0.8	1.0, 1.15

25.3.2019

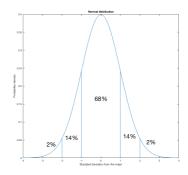

Coefficients

Bar plot

- $\circ \quad \text{Large coefficient} \rightarrow \text{important effect}$
- $\circ \quad \text{Small coefficient} \rightarrow \text{negligible effect}$

Probability plot

- o "Outlying" effects not random
- o Only for factorial designs


Random error assumption

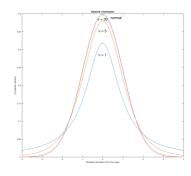
Observations that differ from the model due to random experimental error

- \rightarrow Residuals approach the normal distribution
- \circ Mean μ, variance $\hat{σ}^2$

Normalised residuals

o < |3| form 99.7%

25.3.2019

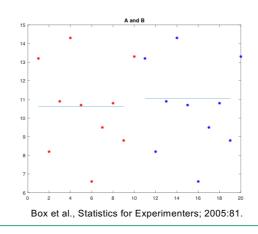

Student's t distribution

In practice population $\hat{\sigma}^2$ is unknown

o An estimate of $\hat{\sigma}^2$ depends on the number of observations

Student's t distribution

- o Depends on dfs
- o Two-sided



Student's t distribution

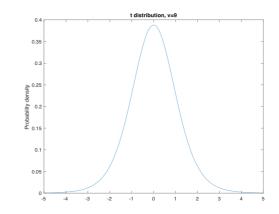
Randomized pair comparison

13.2 | 6.6 | 8.2 | 9.5 | 10.9 | 10.8 | 14.3 | 8.8 | 10.7 | 13.3

В				
14.0	6.4			
8.8	9.8			
11.2	11.3			
14.2	9.3			
11.8	13.6			

25.3.2019

Student's t distribution


Random sampling of differences

$$s_d^2 = \sum \frac{(d-d)^2}{n-1} = 0.15$$

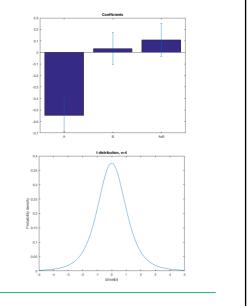
$$s_d = \sqrt{\frac{s_d^2}{n}} = 0.12$$

$$\rightarrow t_0 = \frac{0.41 - 0}{0.12} = 3.35$$

→ One- or two-sided?

Aalto University
School of Chemical
Technology

Student's t distribution

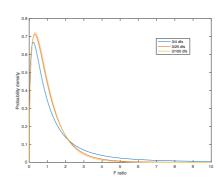

For regression coefficients

- o Compare with zero
- H_0 : $\beta_i = 0$ and H_1 : $\beta_i \neq 0$

$$\rightarrow H_1 \text{ if } \left| \frac{\beta_i}{se(\beta_i)} \right| > t_{\frac{\alpha}{2},n-p}$$

Different ways to calculate $se(\beta_i)$

- o Residuals
- o Replicates


25.3.2019

F distribution

For the ratio of sample variances

- o Distribution for every combination of dfs
- o One-sided with low dfs

Aalto University
School of Chemical
Technology

ANOVA

Blood sugar from different diets

А	В	С	D
62	63	68	56
60	67	66	62
63	71	71	60
59	64	67	61
63	65	68	63
59	66	68	64

Box et al., Statistics for Experimenters; 2005:134.

25.3.2019 11

ANOVA

Blood sugar from different diets

	Α	В	С	D
	62	63	68	56
	60	67	66	62
	63	71	71	60
	59	64	67	61
	63	65	68	63
	59	66	68	64
Diet mean	61	66	68	61
From grand mean	-3	2	4	-3

ANOVA

Blood sugar from different diets

$$y_i - \overline{y}$$

Α	В	С	D
-2	-1	4	-8
-4 -1	3	2	-2
-1	7	7	-4 -3
-5	0	3	-3
-5 -1	1	4	-1
-5	2	4	0

$$\overline{y}_t - \overline{y}$$

	٠,	•	
Α	В	С	D
-3	2	4	-3
-3	2	4	-3
-3	2	4	-3
-3	2	4	-3
-3 -3 -3 -3	2	4	-3
-3	2	4	-3

$y_i - \overline{y}_t$

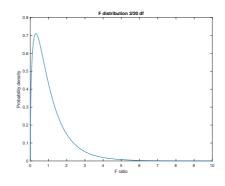
Α	В	C	D
1	-3	0	-5
-1	1	-2	1
2	5	3	-1
2 -2 2 -2	-2	-1	0
2	-1	0	2
-2	0	0	3

25.3.2019 13

ANOVA

Blood sugar from different diets

Parameter	df	Sum of squares (SS)	Mean square (MS)	F ratio
Total corrected	23	340		
Diets	3	228	76	14
Residual	20	112	5.6	



F distribution

Testing model significance

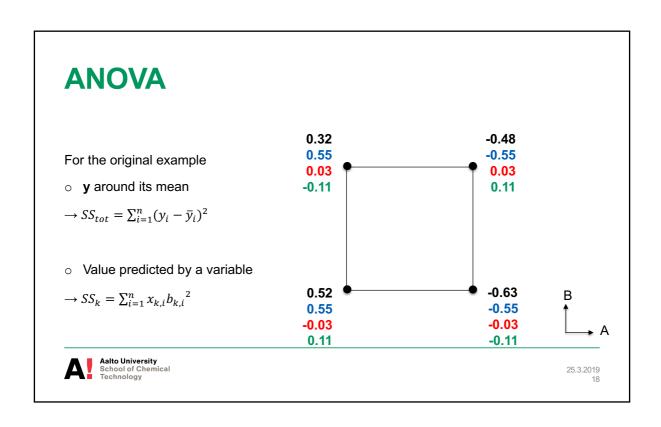
- o F = Model variance / residual variance
- o H₀: $\beta_1 = ... = \beta_i = 0$
- H_1 : at least one $\beta \neq 0$

$$\rightarrow$$
 H₁ if $\frac{MS_{\text{mod}}}{MS_{res}} > F_{\alpha,k,n-p}$

25.3.2019 15

ANOVA

For the original example, main effects model


Parameter	df	Sum of squares (SS)	Mean square (MS)	F- value	p-value
Total corrected	7	2.6			
Model	2	2.4	1.2	34	<0.01
Residual	5	0.2	0.04		

25.3.2019 17

For the original example \circ y around its mean $\rightarrow SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$

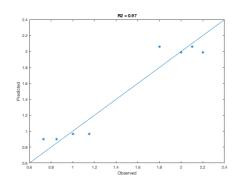
Aalto University
School of Chemical
Technology

ANOVA

Parameter	df	Sum of squares (SS)	Mean square (MS)	F-value	p-value
Total corrected	7	2.57			
Model	3	2.49	0.83	39.8	<0.01
А	1	2.39	2.39	114	
В	1	0.01	0.01	0.44	
AB	1	0.09	0.09	4.54	
Residual	4	0.08	0.04		

25.3.2019 19

R² value

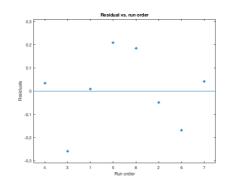

The variation explained by the model

$$R^2 = \frac{SS_{\text{mod}}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}$$

- o Sum of squares are additive
- o Always increases with more terms
- \rightarrow Easy to overfit

With $R^2 = 0.50$ the model equals noise

 \rightarrow No model

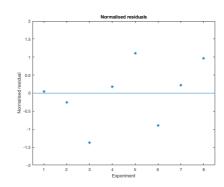


Aalto University
School of Chemical
Technology

Residuals

Easier to identify abnormalities

- o Raw residuals not very useful
- → Different normalisation norms are used

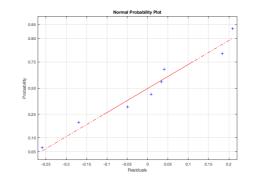


25.3.2019 21

Residuals

Normalised residuals

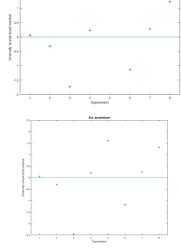
- \rightarrow Residuals due to pure random error
- 0 4.6% > |2|
- 0.3% > |3|



Residuals

Normal probability plot

- Normally distributed should lie on a straight line
- o Same with coefficients?



25.3.2019 23

Residuals

Studentized residuals

o Take into consideration leverage

Session 2

Diagnostics

- o Coefficients
- o Random error assumption
- o Statistical distributions
- o ANOVA
- \circ R^2
- o Residuals

25.3.2019 25

Nomenclature

Sum of squares

Overfitting

Bar plot

Probability plot

Random error

Degrees of freedom

Variance

Normalisation

Studentized residuals

Leverage

Thank you!

