

Design of experiments

Mikko Mäkelä

Aalto University, School of Chemical Engineering Department of Bioproducts and Biosystems Espoo, Finland

Session 1

Introduction

o Why experimental design

Factorial design

- o Design matrix
- o Model equation = coefficients
- o Residual
- o Response contour

Session 2

Factorial design

- o Research problem
- o Design matrix
- o Model equation = coefficients
- o Degrees of freedom
- o Predicted response
- o Residual
- o ANOVA
- R²
- o Response contour

25.3.2019

Research problem

A chemist is interested on the effect of temperature (A), catalyst concentration (B) and time (C) on the molecular weight of polymer produced

o She performed a 23 factorial design

Parameter	Low	High
A (°C)	100	120
B (%)	4	8
C (min)	20	30

Myers et al., Response Surface Methodology (3rd ed.); 2009: 131.

Design matrix

N:o	Α	В	С	Resp.
1	100	4	20	2400
2	120	4	20	2410
3	100	8	20	2315
4	120	8	20	2510
5	100	4	30	2615
6	120	4	30	2625
7	100	8	30	2400
8	120	8	30	2750

Build a design matrix with interactions and determine the coefficients

25.3.2019

Model

Empirical model

$$y_c = f(A, B, C)$$

$$\mathbf{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

In matrix notation

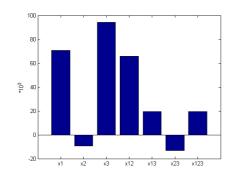
Coefficients

Model coefficients

Least squares calculation

Coefficient significance?

o 8 model terms



25.3.2019

Degrees of freedom

Degrees of freedom (df) lost by imposing linear constraints on a sample

o E.g. sample variance:

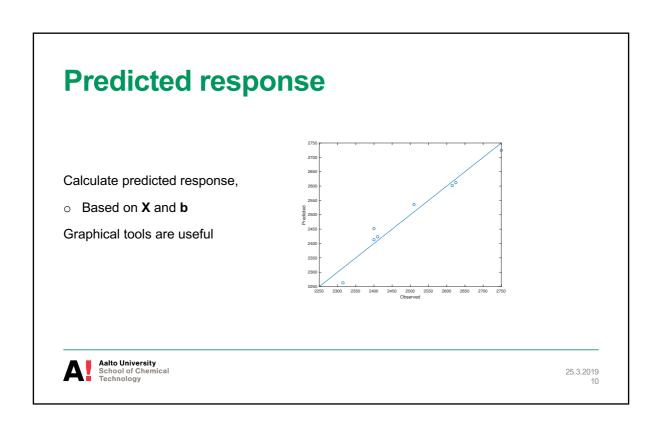
$$s^{2} = \frac{\sum (y - \overline{y})^{2}}{n - 1} \quad \text{where} \quad \sum (y - \overline{y}) = 0$$

 \rightarrow n - 1 residuals can be used to completely determine the others

In regression models, dfs are lost due to the constraints imposed by the coefficients

o Residual df n - p with n observations and p = k + 1 model terms



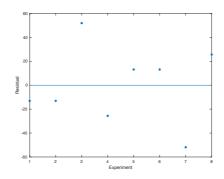


Residuals

Calculate model residuals

A common way is to scale the residuals

- $\circ \quad \text{E.g. standardized residual} \\$
- \rightarrow Need an error approximation

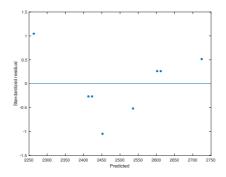


25.3.2019 11

Residuals

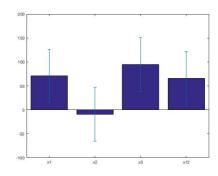
Standardized residuals

o > | 3 | generally a potential outlier, why?



Coefficients

Standard error / confidence interval of model coefficients



25.3.2019 13

ANOVA

Analysis of variance (ANOVA) allows to statistically test the model

- o F test for variances
- \circ H₀: $\beta_1 = \beta_2 = ... = \beta_k = 0$
- H_1 : at least one $\beta \neq 0$

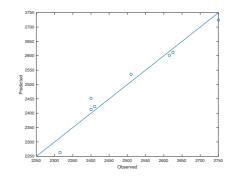
Parameter	df	Sum of squares (SS)	Mean square (MS)	F-value	p-value
Total corrected	n-1	SStot			
Model	k	SSmod	MSmod	MSmod /MSres	<0.05-0.10
Residual	n-k-1	SSres	MSres		

R² statistic

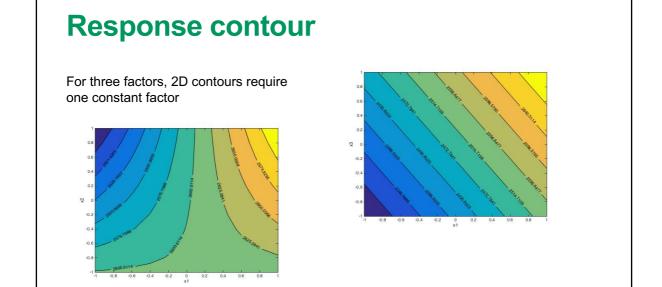
Data variation explained by the model

o Compares model and total sum of squares

 $R^2 = 95\%$



Aalto University School of Chemical Technology 25.3.2019 15



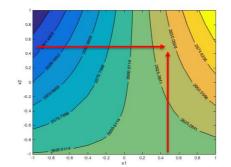
Response contour

Use of the model

- o Prediction
- o Finding an optimum
- Verification

A = 115 and B = 7

- o $\mathbf{x}_{m} = [1 \ 0.5 \ 0.5 \ 1 \ 0.25]$
- \circ y_mhat = 2645



25.3.2019

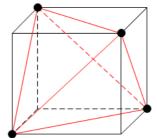
Fractional factorials

With many factors factorial designs require a lot of experiments (2^k)

→ Fractional factorials

Denoted e.g. 23-1

- o Half-fraction of a 23 design
- o Enables only a main effect model
- Watch out for aliases

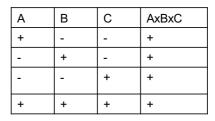


Fractional factorials

Defining relation I = ABC

Α	В	С	AxBxC
-	-	-	-
+	-	-	+
-	+	-	+
+	+	-	-
-	-	+	+
+	-	+	-
-	+	+	-
+	+	+	+

Α	В	С	AxBxC
-	-	-	-
+	+	-	-
+	-	+	-
-	+	+	-



25.3.2019 19

Alias structure

Some terms cannot be independently estimated due to aliasing

$$\circ$$
 I = ABC \rightarrow A = BC, B = AC, C = AB

Α	В	С	AB	AC	ВС	AxBxC
-	-	-	+	+	+	-
+	+	-	+	-	-	-
+	-	+	-	+	-	-
-	+	+	-	-	+	-

Session 2

Factorial design

- o Research problem
- o Design matrix
- Model equation = coefficients
- o Degrees of freedom
- o Predicted response
- o Residual
- o ANOVA
- \circ R^2
- o Response contour
- o Fractional factorials

25.3.2019 21

Nomenclature

Design matrix

Coefficient

Degrees of freedom

Prediction

Residual

Outlier

ANOVA

Sum of squares

Mean square

Contour

Alias

25.3.2019 22

22

Thank you!

