Lecture 5 - AAE-E3030: A Model of Premixed Combustion March 25th Ville Vuorinen

Lecture 5 - AAE-E3030: A Model of Premixed Combustion March 25th Ville Vuorinen

Q1) Why and how 'premixed' ?

- Q2) Typical flow velocities ?
- Q3) Are the flames rotationally symmetric ?
- Q4) Shape and structure of the flame?
- Q5) Where is the rate of highest heat release ?
- Q6) Pressure/density/velocity/temperature/Cp at points A and B?

Lecture 5 in the Multiphase Course Timetable

Warnatz

Ch. 8. 10. 15

- Lectures 1-2 \rightarrow Fuel drops/multiphase flows
- Lectures 3-4 → Premixed 0d chemistry
- Lecture 5 \rightarrow Premixed combustion 1d & 2d
- Lectures 6-7 → Premixed 1d chemistry
- Lecture 8 → Non-premixed combustion

Motivation

Combustor (partially premixed ?)

https://www.youtube.com/watch?v=B7OajNkGp80

Acoustics and flames (acoustic modulation)

https://www.youtube.com/watch?v=EQXcOqH_Drs&list=PLxAI1X0qwonL1OyfLgfjonQSVFH8AdXnT

Flame blowoff and flashback (influence of inflow rate) https://www.youtube.com/watch?v=KmyGR6mSPe0&list=PLxAI1X0gwonL1OyfLgfjonQSVFH8AdXnT&index=2

LES of premixed combustor (influence of swirl and recirculation techniques) https://www.youtube.com/watch?v=Mim33CvQTUQ

Spark ignition of premixed gas (advantages of mixture uniformity thanks to premixing) https://www.youtube.com/watch?v=xg3Ri1-1rCE

LES simulation of spark ignited fuel

Courtesy of: Nguyen and Kempf, LES4ICE conference (2016)

Large-Eddy Simulation (LES CFD method) on Spark-Ignited (SI), Premixed Methane-Air Combustion

CFD-simulation of premixed gas combustion (G-equation) in Spark Ignited gas engine. M.Ghaderi-Masouleh, Vuorinen et al. Applied Energy (2018)

Typical scalar (e.g. concentration of incoming gas A) and velocity fields in a turbulent jet

Simulation of premixed flame for different flame speeds

Courtesy of B.Tekgul (2017)

We look next on a simplified model on premixed flame and imagine how the flame would look like locally

Locally, flame is considered to be 1 dimensional in the direction of flame surface normal

Important concept: $S_{L} = laminar flame speed$

Some assumptions

Single step reaction of premixed fuel and air either lean, stoichiometric or rich. For example:

 $CH_4 + 2(3.76N_2 + O_2) \rightarrow CO_2 + 2H_2O + 7.52N_2$

The deflagration type flame front thickness is thin, simple scaling estimates:

$$\delta = \frac{\lambda_{therm}}{\rho c_p S_L} = \frac{D_{therm}}{S_L} \qquad \text{Re}_{flame} = \frac{S_L \delta}{D_{therm}} = 1$$

A progress variable describes flame evolution:

__h __

$$c = \frac{Y_f^b - Y_f}{Y_f^b - Y_f^u} \qquad \begin{array}{c} c = l \rightarrow \text{ unburnt} \\ c = 0 \rightarrow \text{ burnt} \end{array} \qquad T \approx (1 - c) T_b + c T_u$$

1d Convection-Reaction Equation for c i.e. c-equation

Progress variable approach in general (1D, 2D and 3D)

$$\frac{\partial \rho c}{\partial t} + \nabla \cdot \rho c \, \boldsymbol{u} = -S_d \rho_u |\nabla c|$$

Interplay of thermal diffusion and global reaction rate consumes fuel

$$S_{d} = displacement speed$$

$$S_{d} = S_{L}(1 - L_{M} \kappa - S)$$

$$S_{d} = S_{d} = S_{L}(1 - L_{M} \kappa - S)$$

$$S_{d} = S_{d} = S_{$$

C-equation says: "We look at an averaged flame on scales much larger than flame thickness. To describe flame propagation we need model for 1) reaction rate, 2) flame speed, and 3) burnt/unburnt thermodynamics."

Premixed Combustion as Flame Propagation Phenomenon G-equation (Markstein 1964, Williams 1985)

Premixed Combustion as Flame Propagation Phenomenon G-equation (Markstein 1964, Williams 1985)

Some Available Options as Premixed Combustion CFD Model (May Apply to Non-Premixed as Well)

Model family/concept	Some assumptions	What the model typically needs?	Benefits	Some Drawbacks
G-equation (Markstein 1964, Williams 1985)	 physical flame thickness δ << Δx flame at G = const. i.e. level-set approach separation to burnt and unburnt regions 	- Correlation S L - an algorithm to find the flame position	- single equation to describe premixed combustion	 - G=G(x,y,z,t) has no physical meaning elsewhere than at flame - level set approach so the flame really needs to be tracked → compications for implementation
Flame surface density (c-equation)	 Thin flame δ << Δx c is defined everywhere in contrast to level-set 	- Correlation S - Correlation for flame surface density (effect of unresolved flame deviation from planar)	 single equation to describe premixed combustion rather simple to implement 	-assumption of single step chemistry -a particular link between emissions and c needed - possibly even extra eqn for surface density needed
Flamelet method	- flame=ensemble of 1d flames	- pre-calculated chemistry look-up tables	- fast in runtime with accurate description of species from tables	- pre-tabulation can be a tedious task
Direct chemistry	- full Navier-Stokes + species eqs solved - flame is resolved DNS	 low Reynolds number accurate diffusion model 	- computational 'experiment' with all possible data available	- very heavy and limited to small mechanisms
Thickened flame	 flame artificially thickened to numerically resolve the flame reaction rate scaled by L and thermal diffusivity by 1/L while S is const. 	- reduced or accurate chemical mechanism which gives correct flame speed and IDT	- flame front is really resolved with important species	- is the physics still the same ?

Assumptions of this eqn?

$\rho U \sin(\alpha) = \rho_u S_L$ Bunsen Flame – Background

Figure 1 : Typical Bunsen burner. (*Peters*. *Turbulent combustion*)

Figure 2 : Kinematic balance for a steady oblique Bunsen flame. (*Peters. Turbulent combustion*)

Compressible fluid flows: Full Navier-Stokes Equations

Mass conservation

Viscous stress tensor

σ _{ij} =μ	∂u _i	∂u_j	$2 \partial u_i$
	∂x_j	∂x_i	$-\frac{1}{3}\mu \frac{1}{\partial x_j} \delta_{ij}$

Internal onergy

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_i}$$

Momentum conservation

Internal energy	
$e = c_v T + \frac{1}{2}u$	l ² _i

$$\frac{\partial \rho e}{\partial t} + \frac{\partial (\rho e + p) u_j}{\partial x_i} = \frac{\partial u_i \sigma_{ij}}{\partial x_i} + \frac{\partial}{\partial x_i} \lambda \frac{\partial T}{\partial x_i}$$

Energy conservation

 $p = \rho RT$

Note: 1 + 3 + 1 equations, the set is closed by the equation of state

Note 1: Possible viscosity model: Sutherland

Note 2: Specific heat is in general temperature dependent

Simplified Matlab Code for Simulating Premixed Slot Burner

- 2d Navier-Stokes equations of gas dynamics i.e. mass, momentum, and energy conservation
- c-equation to describe burnt/unburnt region
- Runge-Kutta 4 time integration
- Premixed combustion of a prototype "fuel" with $T_{\mu} = 500 \text{K} T_{\mu} = 1000 \text{K}$
- Density effect accounted for via NS-eqs (continuity, momentum eqs)
- Ideal gas law p=pRT
- The code can simulate 1) Bunsen burner, 2) Flame propagation in 2d "quasi-turbulence"

Bunsen Flame – Domain Modeled as a 2d "Slot" Burner in the Matlab Code

Bunsen Flame – This Case is With Top-Hat Velocity Profile Instead of Parabolic ($S_L/U_{iet}=0.75$). High Reynolds number.

Bunsen Flame – Burnt vs Unburnt Density

Bunsen Flame – Burnt vs Unburnt Density

Bunsen Flame – Burnt vs Unburnt Density

Progress variable source term $|\nabla c|S_{L}(1+\kappa L)$

Bunsen Flame – Curvature and Markstein Length Effect

Ignition Kernel: U' is the Typical Turbulent Fluctuation "Eddy Amplitude". We keep here U' constant while changing U'

→ Reaction rate evolution

$$-S_d \rho_u |\nabla c|$$

 → Note how the curvature term enhances or slows down the flow speed depending on the sign (+/-) of the curvature (see the animations on kernel & Bunsen flame)

 l_T/δ