
Graph-based Path Planning
Graphs to the rescue!!

Dr. Kshitij Tiwari

Dept. of Electrical Engineering and Automation
kshitij.tiwari@aalto.fi

March 26, 2019

Graph-based Path Planning
K.Tiwari

2/75

Overview
Biography
Motivation
About
Graph-based Path Planners

Scenario
Graphs
Best-first Search Methods

Dijkstra Algorithm
A* Algorithm
D* Algorithm

Sampling Based Methods
RRT
PRM

Summary
Cliff Hanger
Readings

Graph-based Path Planning
K.Tiwari

3/75

Biography

I Bachelors: Electronics &
Comm. Engg. (HKU,2013)

I Masters: Artificial
Intelligence (UoE,2014)

I Ph.D.: Robotics
(JAIST,2018)

I Postdoc: Brain-inspired
Robotics (Aalto,Present)

Let’s get to business!!!

Graph-based Path Planning
K.Tiwari

4/75

Motivation

I Definition of a robot X

I Robot positioning (Localization) X

I Path planning . . .

Graph-based Path Planning
K.Tiwari

5/75

Motivation (cont.)

Figure: Robotic arm. Figure: Autonomous cars.

All mobile robots need to plan paths.

Graph-based Path Planning
K.Tiwari

6/75

About

I Introductory lecture for graph-based path planning approaches.

I Includes several visual props.
I Pop Quizzes!! to be discussed on MyCourses.

I For self-learning and are NOT graded.
I DL: Lecture 12, April 3, 2019 @ 1700 Hrs.

Graph-based Path Planning
K.Tiwari

7/75

Graph-based Path Planners

Figure: Dog and the food scenario.

Graph-based Path Planning
K.Tiwari

8/75

Graph-based Path Planners (cont.)

Figure: Obstructions to direct path to food.

Graph-based Path Planning
K.Tiwari

9/75

Graph-based Path Planners (cont.)

I Direct path blocked by obstacles.
I Need to find path to goal.

Figure: Grrrr . . . I will heck you up hooman.

Need a managable representation of search area !!!

Graph-based Path Planning
K.Tiwari

10/75

Graph-based Path Planners (cont.)

I Discretizing the search space.
I Pixelation using pixels.
I Tesselation using Square/Hexagon/Triangles/Circles. X

I Representing grid as a graph.

I Finding paths on graphs.

Graph-based Path Planning
K.Tiwari

11/75

Graph-based Path Planners (cont.)

Figure: Simplifying search area⇒ Grid World.

Graph-based Path Planning
K.Tiwari

12/75

Graph-based Path Planners (cont.)

Graph descriptors:
I Nodes: The locations represented by circles.

I Edges: The lines connecting the nodes.

I Path: The collection of edges and nodes which define paths
from start to goal.

Let’s look at basic types of graphs.

Graph-based Path Planning
K.Tiwari

13/75

Graph-based Path Planners (cont.)

Figure: Fully connected graphical representation with bi-directional edges.

Graph-based Path Planning
K.Tiwari

14/75

Graph-based Path Planners (cont.)

Figure: Weighted graphical representation.

Graph-based Path Planning
K.Tiwari

15/75

Graph-based Path Planners (cont.)

Figure: Directed (Acyclic) graphical representation.

Graph-based Path Planning
K.Tiwari

16/75

Graph-based Path Planners (cont.)

Remarks:
I Graph-based approaches deal with graphs only.
I They do not care about:

I Indoor/outdoor
I Walls/doors/windows

I They only care about:
I Obstacles
I Free space

I Graph→ Path. Process graph to find path
I Edges are abstract concepts.

I Explain which nodes are reachable but NOT how.

Graph-based Path Planning
K.Tiwari

17/75

Graph-based Path Planners (cont.)

Figure: Graphical representations of scenario.

Graph-based Path Planning
K.Tiwari

18/75

Graph-based Path Planners (cont.)

Path finding in graphs can be done via:
1. Best-first Search Methods

I Dijkstra:
I prioritizes exploration over low-cost paths.

I A*
I bias search towards goal using heuristics.

I D*
I using heuristics and tackle dynamic obstacles.

2. Sampling Based Methods
I RRT

I Single-query Sampling based search.
I PRM

I Multi-query Sampling based search.

Let’s dive deeper!!

Graph-based Path Planning
K.Tiwari

19/75

Best-first Search Methods

Dijkstra Algorithm

I Calculates shortest path.
I Chosen root node to every other node in graph.

I Needs weighted graphs.

Figure: Recap: Weighted graphical representation.

Graph-based Path Planning
K.Tiwari

20/75

Best-first Search Methods (cont.)

Figure: Step 1. Select a node and mark with star symbol. Mark costs of
selected node as 0 and others as∞.

Graph-based Path Planning
K.Tiwari

21/75

Best-first Search Methods (cont.)

Figure: Step 2. Associate cost for neighbors of selected node.

Graph-based Path Planning
K.Tiwari

22/75

Best-first Search Methods (cont.)

Figure: Step 3. Choose the cheapest node and repeat while ignoring
visited nodes. Pick any in case of identical cost.

Graph-based Path Planning
K.Tiwari

23/75

Best-first Search Methods (cont.)

Pop-Quiz (PQ1)!!

I What is the shortest path for doggo based on this graph?
I What is the net cost?

Graph-based Path Planning
K.Tiwari

24/75

Best-first Search Methods (cont.)

Dijkstra(StartNode,G)

1: Input:
I StartNode : node representing start position
I G : entire graph of state space

2: Output:
I ShortestPath : list of node that form shortest path from

start to goal

Graph-based Path Planning
K.Tiwari

25/75

Best-first Search Methods (cont.)

3: V isited← StartNode;UnV isited← G StartNode
4: do
5: CurrNode← arg min∀u∈UnV isited DIST(V isited[−1], u) .

Cheapest node as current node
6: NN ← Neighbors(CurrNode,G) . Extract 1-hop neighbors
7: ∀n ∈ NN ← minCost(n), Cost(CurrNode, n). Update Costs
8: V isited← ∪ CurrNode . Mark current node as visited
9: while UnV isited! = NULL . Repeat until all nodes visited

Graph-based Path Planning
K.Tiwari

26/75

Best-first Search Methods (cont.)

Figure: Showcasing the progress of Dijkstra. N.B.: Lot of wasteful steps.
Image c©: Subhrajit Bhattachary

Graph-based Path Planning
K.Tiwari

27/75

Best-first Search Methods

A* Algorithm

Overview:
I Dijkstra wastes a lot of steps

I Expansions not always towards the goal
I Some method to bias the expansion of needs required

I Use heuristics to bias the expansion

This heuristic expansion is then called A* algorithm.

Graph-based Path Planning
K.Tiwari

28/75

Best-first Search Methods (cont.)

Components for A* based planning:
I Definition of valid actions.

I Definition of grid resolution.

I Definition of cost associated with movement.

Graph-based Path Planning
K.Tiwari

29/75

Best-first Search Methods (cont.)

Figure: Valid actions from a grid cell. No diagonal movements for simplicity.

Graph-based Path Planning
K.Tiwari

30/75

Best-first Search Methods (cont.)

Figure: Arbitrary grid resolution.

Graph-based Path Planning
K.Tiwari

31/75

Best-first Search Methods (cont.)

The path cost encompasses two kinds of costs:

1. Transition Cost:
The cost incurred when moving from one grid to its immediate
neighbor.

2. Net Estimated Cost:
This cost is an estimate (heuristic) of the overall path cost to be
incurred from start to goal.

Graph-based Path Planning
K.Tiwari

32/75

Best-first Search Methods (cont.)

Let us look at a worked example: Helping the dog get to its food.
Notational Convention:

I Bottom Left: Transition cost from start to current grid

I Bottom Right: Heuristic cost from current node to goal using
Manhattan distance

Graph-based Path Planning
K.Tiwari

33/75

Best-first Search Methods (cont.)

Figure: Step 1. 2 cells have same cost. Pick LEFT.

Graph-based Path Planning
K.Tiwari

34/75

Best-first Search Methods (cont.)

Figure: Step 2. Action UP has lowest cost.

Graph-based Path Planning
K.Tiwari

35/75

Best-first Search Methods (cont.)

Figure: Step 3. Tied low-cost so, continue with previous action:UP

Graph-based Path Planning
K.Tiwari

36/75

Best-first Search Methods (cont.)

Figure: Step 4. Action:LEFT

Graph-based Path Planning
K.Tiwari

37/75

Best-first Search Methods (cont.)

Pop-Quiz (PQ2)!!

I How many steps finally?
I Final cost?
I Final path?
I Type of graph?

Graph-based Path Planning
K.Tiwari

38/75

Best-first Search Methods (cont.)

Need to find the shortest path to goal autonomously !!!

I Use A* algorithm.
I Additionally, define 2 kinds of nodes:

I Open Node:
consists on nodes that have been visited but not expanded
(meaning that sucessors have not been explored yet). This is the
list of pending tasks.

I Close Node:
consists on nodes that have been visited and expanded
(sucessors have been explored already and included in the open
list, if this was the case).

Graph-based Path Planning
K.Tiwari

39/75

Best-first Search Methods (cont.)
A*(StartNode,GoalNode)

1: Input:
I StartNode : node representing start position
I GoalNode : node representing goal position

2: Output:
I ShortestPath : list of node that form shortest path from

start to goal
3: OpenList = [];ClosedList = [];ChildNodes = []
4: OpenList← StartNode . Store Start Loc
5:

6: do
7: CurrNode← arg min∀n∈OpenList Cost(StartNode, n)
8: OpenList← CurrNode . Remove from OpenList
9: ClosedList← CurrNode

Graph-based Path Planning
K.Tiwari

40/75

Best-first Search Methods (cont.)

10: if CurrNode == GoalNode then
11: print("Arrived at Goal")
12: break . Terminate
13: end if
14: ChildNodes← GenChild(CurrNode)
15: for ∀c ∈ ChildNodes do
16: if c ∈ ClosedList then
17: pass

18: end if
19: c.f, c.t, c.e← Cost(StartNode, c,GoalNode)
20: if c ∈ OpenList then
21: if c.t > on.t∀on ∈ OpenList then
22: pass

23: end if

Graph-based Path Planning
K.Tiwari

41/75

Best-first Search Methods (cont.)

24: end if
25: OpenList← c . Store child
26: end for
27:

28: while OpenList! = NULL
29: Return ShortestPath(StartNode,GoalNode, ClosedList)

Graph-based Path Planning
K.Tiwari

42/75

Best-first Search Methods (cont.)

Cost(StartNode, CurrNode,GoalNode, StepCost = 1)

1: Input:
I StartNode : node representing start position
I CurrNode : node representing current position
I GoalNode : node representing goal position
I StepCost : fixed cost of transitioning to immediate neighbors

(children)
2: Output:

I f : sum of transition and net estimated costs from current
node

I t : transition cost
I e : net estimation cost

Graph-based Path Planning
K.Tiwari

43/75

Best-first Search Methods (cont.)

3: t = DIST(CurrNode, StartNode) + StepCost
4: e = DIST(CurrNode,GoalNode)
5: f = t + e
6: Return{f, t, e}

Graph-based Path Planning
K.Tiwari

44/75

Best-first Search Methods (cont.)

GenChild(CurrNode)

1: Input:
I CurrNode : node representing current position

2: Output:
I ChildNodes : all adjacent (valid) nodes of current node

3: ChildNodes← isNeighbor(CurrNode) . Get all children

Graph-based Path Planning
K.Tiwari

45/75

Best-first Search Methods (cont.)

Figure: Showcasing the progress of A*. Image c©: Subhrajit Bhattachary

Graph-based Path Planning
K.Tiwari

46/75

Best-first Search Methods (cont.)

Pop-Quiz (PQ3)!!
In Romeo and Juliet, Shakespeare said “What’s in a name?”. If there
is nothing, is A* just an arbitrary name?

Graph-based Path Planning
K.Tiwari

47/75

Best-first Search Methods

D* Algorithm

Figure: Dog and the food but with dynamic obstacles also present.

Graph-based Path Planning
K.Tiwari

48/75

Best-first Search Methods (cont.)

I Presence of dynamic obstacles makes planning challenging.
I A* re-planning is costly.

I Solution: D* Search Algorithm

Graph-based Path Planning
K.Tiwari

49/75

Best-first Search Methods (cont.)
D*(StartNode,GoalNode)

1: Input:
I StartNode : node representing start position
I GoalNode : node representing goal position

2: Output:
I ShortestPath : list of node that form shortest path from

start to goal
3: OpenList = [];ClosedList = [];ChildNodes = []
4: OpenList← StartNode . Store Start Loc
5:

6: do
7: CurrNode← arg min∀n∈OpenList Cost(StartNode, n)
8: OpenList CurrNode . Remove from OpenList
9: ClosedList← CurrNode

Graph-based Path Planning
K.Tiwari

50/75

Best-first Search Methods (cont.)
10: if CurrNode == GoalNode then
11: print("Arrived at Goal")
12: break . Terminate
13: end if
14: ChildNodes← GenChild(CurrNode)
15: for ∀c ∈ ChildNodes do
16: Same as A*
17: end for
18: if EnvChange() then . If environment changed
19: ChildNodes← GenChild(CurrNode) . Revise nodes
20: UpdateCost(ChildNodes) . Update affected children
21: end if
22: while OpenList! = NULL
23: Return ShortestPath(StartNode,GoalNode, ClosedList)

Graph-based Path Planning
K.Tiwari

51/75

Best-first Search Methods (cont.)

Remarks:
I D* is quite similar to A* but . . .

I Allows changes in environments
I Recalculation only for affected nodes

Graph-based Path Planning
K.Tiwari

52/75

Best-first Search Methods (cont.)

Pop-Quiz (PQ4)!!
Is D* just an arbitrary name?

Graph-based Path Planning
K.Tiwari

53/75

Best-first Search Methods

Pop-Quiz (PQ5)!!

I If you lookup the literature, you will find the mention of
Configuration Spaces and Work Spaces. Can you
explain the difference(s) between them?

I How do they relate to the doggo example?

Graph-based Path Planning
K.Tiwari

54/75

Sampling Based Methods

RRT

I Search-space size is a bottleneck for A* and D*.
I E.g.:

I Dog navigation from 2D to UAV navigation in 3D.
I 7DOF robot arm navigation in ND.

I Solution:
I Uniform Grid→ random sampling
I Rapidly-exploring Random Trees a.k.a. RRT

Graph-based Path Planning
K.Tiwari

55/75

Sampling Based Methods (cont.)

RRT Jargon:

I Root: Just like the root of tree (start node).

I Goal: Goal node which must be reached eventually.

I Rand: Randomly generated/sampled node in space to expand
tree.

I Next: Closest node from tree to the Rand node in its direction.

Graph-based Path Planning
K.Tiwari

56/75

Sampling Based Methods (cont.)

Figure: RRT setup for dog-food scenario. Root node shown in blue and
Goal node shown in green.

Graph-based Path Planning
K.Tiwari

57/75

Sampling Based Methods (cont.)

Figure: Step 1. Generate random sample and find the next/nearest node
from free.

Graph-based Path Planning
K.Tiwari

58/75

Sampling Based Methods (cont.)

Figure: Step 2. Generate new random sample and repeat Step 1 with
nearest neighbor.

Graph-based Path Planning
K.Tiwari

59/75

Sampling Based Methods (cont.)

Figure: Step 3. Generate new random sample and ignore if obstructed.

Graph-based Path Planning
K.Tiwari

60/75

Sampling Based Methods (cont.)

Figure: Step N . Final tree (arrival at Goal).

Graph-based Path Planning
K.Tiwari

61/75

Sampling Based Methods (cont.)

RRT(StartNode,GoalNode,NumV ert, StepSize)

1: Input:
I StartNode : node representing start position (root)
I GoalNode : node representing goal position
I NumV ert : number of vertices in tree
I StepSize : incremental distance for tree expansion

2: Output:
I G : RRT Graph

Graph-based Path Planning
K.Tiwari

62/75

Sampling Based Methods (cont.)

3: G← StartNode
4: for v = 1, . . . , NumV ert do
5: Rand← GetRandVert() . Get random config
6: Next← GetNearestVert(Rand,G,StepSize) . Get Nearest

vertex
7: if Next ∈ FreeSpace then
8: G← Next . Move if free
9: end if

10: end for

Graph-based Path Planning
K.Tiwari

63/75

Sampling Based Methods (cont.)

Figure: Showcasing the progress of RRT. Image c©: Steven LaValle

Graph-based Path Planning
K.Tiwari

64/75

Sampling Based Methods (cont.)

Remarks:
I RRT is single-query

I Rooted at start location of dog.
I Dog moves→ renew tree from new root.
I Goal moves→ renew tree.
I Multiple goals→ handle one start-goal configuration at a time.
I Valid only for one-time querying.
I Static obstacles only.

Graph-based Path Planning
K.Tiwari

65/75

Sampling Based Methods

PRM
Overview:

I Stands for Probabilistic Roadmaps.
I are multi-query in nature.

I Roadmaps “rooted” to environment configurations.
I Independent of location of dog.

I Randomly samples points in state space and connects peers.
I Static environments only.

Graph-based Path Planning
K.Tiwari

66/75

Sampling Based Methods (cont.)

Figure: PRM setup. Roadmap around static obstacles irrespective of dog
and food location.

Graph-based Path Planning
K.Tiwari

67/75

Sampling Based Methods (cont.)

Figure: Connect start and goal nodes to roadmap.

Graph-based Path Planning
K.Tiwari

68/75

Sampling Based Methods (cont.)

Figure: Find shortest, obstacle-free to food.

Graph-based Path Planning
K.Tiwari

69/75

Sampling Based Methods (cont.)

PRM(StartNode,GoalNode, k,NumV ert)

1: Input:
I StartNode : node representing start position (root)
I GoalNode : node representing goal position
I k : number of nearest neighbors
I NumV ert : number of vertices in tree

2: Output:
I R : Roadmap

Graph-based Path Planning
K.Tiwari

70/75

Sampling Based Methods (cont.)

3: R← StartNode
4: while |R| < NumV ert do . Comp. constraint
5: Rand← GetRandVert() . Get random config
6: if Rand ∈ FreeSpace then
7: R← Rand . Store if free
8: end if
9: end while

10: for v = 1, . . . , |R| do
11: kNN ← GetNeighbors(k,R[v]) . Get k-neighbors
12: for ∀nn ∈ kNN do
13: if (v, nn)@E and ∆(v, nn) 6= NULL then
14: R← nn . Store if valid and novel
15: end if
16: end for

Graph-based Path Planning
K.Tiwari

71/75

Sampling Based Methods (cont.)

17: end for

Pop-Quiz (PQ6)!!
What is “probabilistic” about PRMs?

Graph-based Path Planning
K.Tiwari

72/75

Summary

I Introduction to Graph-search
I Exposure to Best-first search approaches

I Dijkstra
I A*
I D*

I Exposure to Sampling-based approaches
I RRT
I PRM

I Worked examples and pseudo-codes.
I Animations as visual props to ease understanding.
I Several other variants not covered herewith.
I Several pop quizzes for open discussion via MyCourses

Graph-based Path Planning
K.Tiwari

73/75

Cliff Hanger

Ever seen a dog perform
graph-search?

Pop-Quiz (PQ7)!!
How does one represent the dog-sniffing behavior?

Graph-based Path Planning
K.Tiwari

74/75

Books

Graph-based Path Planning
K.Tiwari

75/75

Thank You!!

	Biography
	Motivation
	About
	Graph-based Path Planners
	Scenario
	Graphs
	Best-first Search Methods
	Sampling Based Methods

	Summary
	Cliff Hanger
	Readings

