

Coverage Path Planning

Wide Area Coverage!!

Dr. Kshitij Tiwari

Dept. of Electrical Engineering and Automation kshitij.tiwari@aalto.fi

March 27, 2019

Overview Motivation

Intuition

Coverage Path Planning (CPP)

Travelling Salesman Lawnmower Piano Mover Art Gallery Watchman Route Orienteering Random Exploration Frontier-based Exploration Adaptive Voronoi Exploration Challenges Summary

Readings

Wide Area Coverage K.Tiwari 2/28

Motivation

- ► Robot positioning (Localization) ✓
- Path planning
 - ▷ Graph-based ✓
 - \triangleright Information-based \checkmark
 - ▷ Area-Coverage ...

Applications:

- Area surveillance
 - ▷ Forest, disaster site, etc.
- Patrolling
 - ▷ Event crowd, enemy territory, etc.

Let's get to business!!!

Intuition

- AT&T Internet Availability Map.¹
- To be a monopoly, tap maximal regions asap.
- ► Higher Coverage → lower competition.

Wide Area Coverage K.Tiwari 4/28

Intuition (cont.)

In a robotic setting:

- Operation environment \rightarrow unknown.
- Unknown \propto Risk.
- Minimize risk by acquiring maximal observations until mission termination.

¹Image taken from https://broadbandnow.com/ATT

Mission:

- Maximize Sales \rightarrow visit *all* locations.
- ► **Shortest** possible route.

Wide Area Coverage K.Tiwari 6/28

Figure: 8 cities across USA² for selling a product. Salesman has 5040 possible ways of covering these cities.

Possible route selection strategies:

- ► Greedy:
 - ▷ Choose next closest city.
 - ▷ Produces sub-optimal routes.

Wide Area Coverage K.Tiwari 8/28

- ► 2 Opt Swap:
 - Prevents route cross-overs
 - ▷ Select 2 edges and reconnect to form new paths

Methods for selecting edges for swapping:

- ◊ Local Search:
 - Start with a random route.
 - Select arbitrary pair of edges.
 - If swapping reduces path length, retain and repeat.

Wide Area Coverage K.Tiwari 10/28

• Suffers from local minima

Wide Area Coverage K.Tiwari 11/28

- ◊ Simulated Annealing:
 - Probabilistically accept worse solutions early on.
 - Define temperature \propto affinity for "bad" solution.
 - ► Hot → Accept Bad Solutions
 - ▶ Cold → Reject
- Start with Hot

²Image from https://www.youtube.com/watch?v=SC5CX8drAtU

Coverage Path Planning (CPP)-Lawnmower

Mission:

- Lawn with 2 static stones³.
- ▶ Mow *whole* lawn.
- ► Avoid *static* obstacles.

Wide Area Coverage K.Tiwari 13/28

Coverage Path Planning (CPP)-Lawnmower (cont.)

Figure: Showcasing the progress of Lawn Mower algorithm. N.B.: Notice the exhaustive nature of this approach.

³Taken from https://www.youtube.com/watch?v=c_8d5sY455o

Wide Area Coverage K.Tiwari 14/28

Coverage Path Planning (CPP)-Piano Mover

Mission:

- Move piano from shop to buyer's house
- Find *shortest* path through city

Wide Area Coverage K.Tiwari 15/28

Coverage Path Planning (CPP)-Art Gallery

Mission:

- Art gallery with expensive exhibits
- ► Hire security personnel to monitor gallery at all times
- How many guards are enough to patrol a gallery with n walls?

Wide Area Coverage K.Tiwari 16/28

Coverage Path Planning (CPP)-Watchman Route

Mission:

- Consider a set of target points (denoted by *) in a polygonal environment as shown.
- ► The objective of the watchmen denoted by R₁,..., R₃ is to find paths (denoted by - -) such that each target (*) is seen from at least one viewpoint (■).
- In this setup, watchman R₁ can observe t₁ and t₂, R₂ can monitor t₃ and t₄ while R₃ can see t₅ − t₈.

Wide Area Coverage K.Tiwari 17/28

Coverage Path Planning (CPP)-Orienteering

Mission:

- Given a start, goal and set of intermediate nodes like a truck with depots⁴.
- ► Find a subset of nodes:
 - Maximize net reward
 - Remain within time budget
 - ◊ E.g., imagine delivering dairy products which perish as time passes
- Well known for vehicle routing problems

Coverage Path Planning (CPP)-Random Exploration

Mission:

- Pick a direction as per whim
- ▶ Rinse-and-repeat

Wide Area Coverage K.Tiwari 19/28

Coverage Path Planning (CPP)-Frontier-based Exploration

Mission:

- ► Identify the frontier
 - ▷ Barrier between known and unknown
 - Function of sensing range
- Move to a candidate on frontier
- Rinse-and-repeat until all area is observed.

Wide Area Coverage K.Tiwari 20/28

Coverage Path Planning (CPP)-Frontier-based Exploration (cont.)

Figure: Illustration of frontier-based expansion of civilization in a strategy game⁵.

Wide Area Coverage K.Tiwari 21/28

Coverage Path Planning (CPP)-Frontier-based Exploration (cont.)

- ► *Grey:* Unobserved region; *White:* Observed region; *Blue:* Frontier
- Expansion using laser scanning

⁵Image from http://www.indieretronews.com/2015/03/freeciv-open-source-inspired.html

Coverage Path Planning (CPP)-Adaptive Voronoi Exploration

Primer on Voronoi Tesselation:

- ► Encodes proximity information between object pairs
 - ▷ Each object is called a *site*
 - Set of pts. in ND that are closer to each site than to any other site form a *Voronoi Cell*
 - > Convex hull of all cells gives a Voronoi Diagram.

Wide Area Coverage K.Tiwari 23/28

Coverage Path Planning (CPP)-Adaptive Voronoi Exploration (cont.)

Mission:

- Generate Voronoi tesselation
- adapt Voronoi cells to faulty hardware⁶
 - Robot 1 has a faulty actuator. Note how its voronoi cell shrinks.

⁶Presented in https://www.youtube.com/watch?v=qyYt3frZ7aw

Coverage Path Planning (CPP)-Challenges

- ▶ These methods are exhaustive in nature
- ► Computationally challenging as size of area increases
- ► Hard to define an optimal termination condition
 - Robot resources vs exhaustivity

Summary

Over the span of last 2 days:

- Presented Graph-based path planning
 - Best-first search
 - Sampling-based search
- ▶ Brief intro to Informative path planning
- ► Per request, presented Coverage path planning
- ► All these 3 classes cover vast majority of well-known planners

You have a path, can you execute it?

Wide Area Coverage K.Tiwari 26/28

Books

"Book" - 2019/2/26 - 18:59 - page i - #1

 \oplus

Multi-Robot Exploration For Environmental Monitoring

The Resource Constrained Perspective

Edited by:

Dr. Kshitij Tiwari Aalto University: Intelligent Robotics Group, Department of Electrical Engg. & Automation,Espoo, 02150, Finland

Prof. Nak Young Chong Japan Advanced Institute of Sc. & Tech. (JAIST),School of Information Science, Nomi City, 923-1211, Ishikawa, Japan

1st Edition

Wide Area Coverage K.Tiwari 27/28

Thank You!!

Wide Area Coverage K.Tiwari 28/28