
Research Article
A DCM Based Attitude Estimation Algorithm for Low-Cost
MEMS IMUs

Heikki Hyyti and Arto Visala

Autonomous Systems Research Group, Department of Electrical Engineering and Automation, School of Electrical Engineering,
Aalto University, P.O. Box 15500, 00076 Aalto, Finland

Correspondence should be addressed to Heikki Hyyti; heikki.hyyti@aalto.fi

Received 16 July 2015; Revised 29 October 2015; Accepted 4 November 2015

Academic Editor: Aleksandar Dogandzic

Copyright © 2015 H. Hyyti and A. Visala. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-
system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although theseMEMS sensors
are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To
be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed
for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in
direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for
acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors
when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by
using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when
there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost,
temperature-based calibrationmethod is also discussed for initially calibrating gyroscope and acceleration sensors. An open source
implementation of the algorithm is also available.

1. Introduction

Inertial measurement units (IMUs) are widely used in atti-
tude estimation in mobile robotics, aeronautics, and navi-
gation. An IMU consists of a triaxial accelerometer and a
triaxial gyroscope and it is used for measuring accelerations
and angular velocities in three orthogonal directions. The
attitude, which is a 3D orientation of the IMUwith respect to
the Earth coordinate system, can be estimated by combining
integrated angular velocities and acceleration measurements.
Microelectromechanical-system (MEMS) IMUs are small,
light, and low-cost solutions for attitude estimation. They
are widely used in mobile robotics, such as unmanned
aerial vehicles (UAVs) [1]. MEMS IMUs are also used in
combination with other sensors, such as global navigation
satellite systems (GNSS) [2, 3], light detection and ranging
(LIDAR) sensors, or cameras in various applications. In
addition, MEMS IMUs are commonly included in modern
mobile phones [4].

Unfortunately, the use of low-cost MEMS IMUs intro-
duces several challenges compared to high-precision mea-
surement devices. Low-cost MEMSs are noisy and their mea-
surements usually include various errors.These errors consist
of an unknown zero level, that is, bias error, and unknown
scale factor, that is, gain error [5]. Moreover, the gain and the
bias tend to drift over time and are affected by temperature
change. Therefore, sensor calibration has become one of the
most challenging issues in inertial navigation [6].

Other problems with IMUs are related to the standard
design of the sensor fusion algorithms. Usually, the roll and
pitch angles are estimated using the measured angle of the
Earth’s gravitation force as reference to the integrated angle
obtained from angular velocity measurements. This works
perfectly if no other forces than gravity exist in the system.
Unfortunately, this is rarely the case. In practical use, when
an IMU is attached to a moving platform or object, these
accelerations are unavoidable. In various cases, as in the
estimation of either a human body [7] or a mobile phone
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[4] position, or in a legged robot [8], these accelerations can
become significantly large. Therefore, their presence should
be taken into account.

Another problem with standard IMU implementations
concerns heading angle estimation. The Earth’s gravitation
field gives no information about this. Therefore, the integra-
tion of triaxial accelerometers and gyroscopes cannot provide
an absolute heading angle.This is commonly overcome using
an extra sensor, usually a triaxial magnetometer [2, 9–16] or
satellite navigation [3, 5, 17–20]. Triaxial magnetometers offer
a good solution if the magnetic field measurement can be
trusted. In practice, this is usually not the case at least in
robotics, since robots are usually made of magnetic metal,
have high current electronics and motor drives, and may
travel within locations that are surrounded by power lines,
magnets, and magnetic metals. Moreover, because the mag-
netic sensor observes the sum field caused by all magnets and
electrically inducedmagnetic fields, the Earth’smagnetic field
cannot be easily separated. Furthermore, satellite navigation
can be of little help, as it does not work well inside buildings
or caves or under dense forest foliage.

The ability to reliably estimate attitude with a minimal
number of sensors would also increase the robustness of
the system in two ways. Firstly, as fewer sensors would be
needed, there would be less risk of sensor failures. Secondly,
it would be beneficial to run an IMU algorithm on the
background as a backup method, even when other mea-
surements are available. In addition, these results could be
compared between the different algorithms to detect failures
and possibly compensate for those faults.

Our proposed method solves presented challenges by
firstly formulating a calibration method as a function of
measured temperature for gains and biases and secondly
using an extended Kalman filter to estimate the bias in
gyroscope measurements online. We have purposely omitted
magnetometer and other possible measurements from our
filter, and we estimate only absolute pitch and roll angles,
thus keeping themain focus on the gyroscope bias estimation.
Although the heading estimate (yaw angle) can be computed
from the results of the proposed filter, it is not an absolute
heading. Instead, it is an integrated bias-corrected angular
velocity around 𝑧-axis. The absolute yaw could be estimated
in a separate filter using any extra measurements. By doing
this, we can increase the robustness of the proposed sensor
fusion algorithm and enhance gyroscope bias estimation. If
the magnetometer or other sensors would fail catastrophi-
cally, only the heading estimate would fail, leaving pitch and
roll estimates unaffected.This can offer significant advantages
for robotic applications such as flying UAVs or other robots.

In contrast to other proposed solutions [21–24], intro-
duced in more detail in the next chapter, we implement an
extended Kalman filter to tune the bias estimates when such
information is available. Furthermore, we do not rely on
constant gains for updating bias. Instead, we use an extended
Kalman filter to employ available information in system and
measurement covariances in order to tune the gains for
updating bias and attitude estimates. Later, in Experiments
and Results, we also show in practice that even in the worst
case scenario, the filter remains stable.

In addition to the calibration and robust estimation of
gyroscope biases, we adapt our measurement covariances to
increase the quality of the filter against changing dynamic
conditions. IMU algorithms usually use the direction of
gravity (through measured accelerations) to reduce accumu-
lating errors in integrated angular velocities during attitude
estimation. This causes unwanted errors in the attitude esti-
mate when nongravitational accelerations or contact forces
are present. We also use a variable-measurement-covariance
method to reduce errors in the attitude estimation caused
by rapid and temporary nongravitational accelerations. It is
affordable to do, as in the DCM representation of rotation;
the bottom row of rotation matrix represents the direction
of gravitational force. As a result, our implementation of
the extended Kalman filter is able to use only six states for
estimating the attitude, gyroscope biases, and the gravity
vector.

In Experiments and Results, we show that our solution is
significantly more accurate than the compared algorithms in
those situations in which either temporary accelerations are
present or significant gyroscope biases exist. With fully cali-
brated bias-free data without nongravitational accelerations,
our algorithm performs as well as the compared algorithms,
since our gyroscope bias estimates do not disturb attitude
estimation.

Our work provides a complete solution that integrates
low-cost MEMS IMU, temperature calibration, online bias
estimator, and a robust extended Kalman filter which is able
to handle large temporary accelerations and changes in sam-
pling rate. We verify our algorithm using multiple different
tests and we also obtain accurate reference measurements
using the KUKA LWR 4+ robot arm and comparisons to
other freely available state-of-the-art algorithms. The used
calibration and measurement data for our tests and the
proposed algorithm (in MATLAB and C++) are published as
open source at https://github.com/hhyyti/dcm-imu.

2. Related Work

Numerous attitude estimation algorithms have become avail-
able. Most of these consist of various Kalman filter solutions
[2, 3, 5, 12, 13, 16, 25], usually extended Kalman filters (EKF)
[7, 9, 10, 15, 17, 18, 20, 26], and some unscented Kalman filters
(UKF) [14, 19, 27], though some non-Kalman filter solutions
also exist [1, 4, 11, 21, 28–30] as well as some geometric
methods [31–34]. In addition, Chao et al. [35] have carried
out a comparative study of low-cost IMU filters. Existing
algorithms often rely on data obtained from military-grade
IMUs, which are usually subject to export restrictions and
high cost that limit commercial applications [29]. Several
authors have reported that cheaper commercial grade IMUs
commonly include non-Gaussian noise in their gyroscope
and accelerometer measurements, often leading to instability
in connecting classical Kalman and extended Kalman filter
algorithms [29, 30]. The same has been noted in an extensive
survey of nonlinear attitude estimation methods by Crassidis
et al. [36]. They also state that EKF is not as good a solution
as other filtering schemes. The survey was published a few
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years prior to most of the papers presenting DCM based
methods [3, 9, 12, 21], and their possibilities were therefore
not considered in their review.

Low-cost MEMSs are usually subject to time-dependent
errors, such as drifting gyroscope biases. Therefore, all IMU
algorithms for low-cost sensors should have an online bias
estimator. Unfortunately, few of the previously published
algorithms developed for only triaxial accelerometers and
gyroscopes have included online bias estimates for gyro-
scopes. In many algorithms, other measurements are needed
in addition to gyroscopes and accelerometers in order to
estimate gyroscope biases. The most commonly used sensors
are triaxial magnetometers [2, 9–16, 25] and satellite naviga-
tion [3, 5, 17–20]. In addition to our work, few filters [21–
24, 30] have been able to estimate gyroscope biases without
extra sensors in addition to the triaxial accelerometer and
gyroscope.

The development of a filter that uses only accelerometer
and gyroscope measurements is difficult and can lead to an
observability problem. This problem arises when a single
vectormeasurement, such as the gravity through acceleration
measurements, gives only information to correct estimates
of attitude angles, as well as the related biases, which
could rotate that vector. The single vector measurement
provides no information about the rotation around that
vector. Hamel and Mahony [30] have discussed the problem
of orientation and gyroscope bias estimation using passive
complementary filter. They have also proposed a solution to
estimate biases even in the single vector case. Subsequently,
Mahony et al. [21] derived a nonlinear observer, termed the
explicit complementary filter, which similarly requires only
accelerometer and gyromeasurements. In another theoretical
study [37], they discussed observability and stability issues
that arise especially while using single vector measurements.
Finally, they proved that, in these single vector cases, the
derivation leads to asymptotically stable observers if they
assume persistent excitation of rigid-body motion.

Similar ideas have been later used in the work by Khosra-
vian and Namvar [38], who proposed a nonlinear observer
using a magnetometer as a single vector measurement. In
addition to their work, Hua et al. [23] have implemented a
nonlinear attitude estimator that allows the compensation
of gyroscope biases of a low-cost IMU using an antiwindup
integration technique. They also show valuable aspects of a
practical implementation of a filter. Finally, the observability
problem for systems, in which the measurement of system
input is corrupted by an unknown constant bias, is tackled
in [39].

The observability problem can also be avoided. Ruizenaar
et al. [22] solve the problem by adding a second IMU to the
system. They propose a filter that uses two sets of triaxial
accelerometers and gyroscopes attached in a predefined
orientation with respect to each other in order to over-
come the observability problem. After their work, Wu et al.
[24] overcome the same problem by actively rotating their
IMU device. Rather than having two separate measurement
devices or an instrumented rotating mechanism, a simpler,
cheaper solution to this problem could be obtained, if we
could overcome the problem algorithmically.

Currently, the most commonly used (at least among hob-
byists with low-cost MEMS) and freely available IMU algo-
rithms are Madgwick’s [11] and Mahony’s [21] non-Kalman
filter methods. Both of these methods are computation-
ally simpler than any Kalman filter implementation. Open-
source implementations by Madgwick are used to compare
these two state-of-the-art implementations to our work.
These implementations are freely available for C and MAT-
LAB at http://www.x-io.co.uk/open-source-imu-and-ahrs-
algorithms/. The explicit complementary filter by Mahony
et al. is used as a primary attitude estimation system on
several MAV vehicles worldwide [21]. However, neither of
these Madgwick’s implementations was able to estimate
biases using only accelerometer and gyroscope measure-
ments. Nevertheless, we used these, as other implementations
were not available at the time of writing.

Mahony’s and Baldwin’s IMU algorithm [21, 29] is based
on an idea roughly similar to our solution. In contrast to our
EKF solution, they derive their direct and complementary
filters using tools from differential geometry on the Lie group
SO(3). This solution is based on the Special Orthogonal
group SO(3), which is the underlying Lie group structure
for space of rotation matrices. Our solution is in principle
defined similarly to their explicit complementary filter with
bias correction; however, instead of their constant gains for
measurement update and bias estimator, we use EKF to tune
these gains.

Madgwick’s implementation [11, 28] is a quaternion
implementation of Mahony’s observer [21], and it uses a
gradient descent algorithm in the orientation estimation.
Madgwick’s implementation [11] also uses simple algebraic
modifications [21] to ensure separation of the roll and pitch
estimation error from the yaw estimation. This addition
helps to deal with unreliable magnetic field measurements.
Madgwick’s solution is computationally efficient because only
one iteration of the gradient descent algorithm is performed
for eachmeasurement.Therefore, the filter is better suited for
highmeasurement frequencies. If used sampling rate is larger
than 50Hz, the remaining error is negligible [11]. In our tests,
we used a significantly larger rate of 150Hz (themaximumwe
could record using Microstrain Inertia-Link).

The effects of dynamic motion and nongravitational
accelerations have previously been taken into account in [14–
16, 18, 27]. Most of this previous work compares the magni-
tude of accelerometer measurements to the expected magni-
tude of Earth’s gravitation field [15, 18, 27]. It is not a perfect
approach, as exactly the same magnitude of accelerometer
measurements can occur inmultiple configurations (e.g., free
fall and an acceleration of 1 g in any direction). A more exact
approach to do this would be using a separate estimate for
nongravitational accelerations as in [14]. Although they use
three separate filter states for estimating linear acceleration
components, this unnecessarily increases the computational
load of the filter. One solutionwould bemaking an adaptation
in the covariance for acceleration measurements using the
magnitude of the difference between an estimated gravity
vector and a measured acceleration [16]. We implemented
this method for our DCM-type representation of orientation.
In our representation of rotation, it is efficient to use an
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estimated gravity vector, as it is included in our state estimates
representing the rotation.

If there were extra measurements for the velocity, for
example, from satellite navigation sensors, then the nongravi-
tational acceleration could be added to the filter as a state to be
estimated.This would make it possible to avoid our proposed
method to tune the measurement covariance of accelerom-
eters and to improve the accuracy of the proposed filter, as
it would no longer be vulnerable to nontemporary or con-
stant accelerations. Many velocity aided attitude estimation
methods are dependent on measurement of linear velocity in
addition to gyro and accelerometer measurements in order
to reliably compensate for nongravitational accelerations [31–
34]. Instead of using velocity measurements, we use only a
low-cost triaxial set of an accelerometer and a gyroscope.

3. Methods

3.1. DCM Based Partial Attitude Estimation. Our proposed
partial attitude estimation builds upon the work by Phuong
et al. [12]. It is based on the relation between the estimated
direction of gravity and measured accelerations. The direc-
tion of gravity is estimated by integrating measured angular
velocities using a partial direction cosine matrix (DCM).The
results are translated into Euler angles in the𝑍𝑌𝑋 convention
[40], which have the following relation to the DCM:
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The notation “𝑠” in (1) refers to sine and “𝑐” to cosine, 𝜑
to roll, 𝜃 to pitch, and 𝜓 to yaw in Euler angles. The direction
cosine matrix 𝑛

𝑏
C, that is, the rotationmatrix, defines rotation

from the body-fixed frame (𝑏) to the navigation frame (𝑛). It is
integrated from initial DCM using an angular velocity tensor
[
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𝜔×] formed from triaxial gyroscope measurements in the
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Normally, in DCM-type filters, the whole DCM matrix
would be updated; however, in this partial-attitude-
estimation case, only the bottom row of the matrix in (1) is
estimated for the proposed filter.These bottom-row elements
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which is derived from (1), (2), and (3) [12]. In (4), 𝑏𝜔
𝑖
, 𝑖 ∈

{𝑥, 𝑦, 𝑧} are measured angular velocities and 𝑛
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, 𝑖 ∈ {1, 2, 3}

are bottom-row elements of the DCM, which are used as
an estimate of the partial attitude. Later in this paper, these
three bottom-row elements are called DCM states, which
form a DCM vector 𝑛
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C
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. [C
3
×] is defined as a rotation

operator which rotates the current DCM vector according to
the measured angular velocities.

The observation model is constructed using accelerom-
eter measurements, which are compared to the current
estimate of the direction of gravity by [12]

𝑏f =
[
[
[

[

𝑏

𝑓
𝑥

𝑏

𝑓
𝑦

𝑏

𝑓
𝑧

]
]
]

]

=

𝑛

𝑏
C𝑇[[

[

0

0

𝑔

]
]

]

=
[
[

[

𝑛

𝑏
𝐶
31

𝑛

𝑏
𝐶
32

𝑛

𝑏
𝐶
33

]
]

]

𝑔, (5)

where 𝑏𝑓
𝑖
, 𝑖 ∈ {𝑥, 𝑦, 𝑧} are accelerometer measurements

(forming a measurement vector 𝑏f) in the body-fixed frame
(𝑏) and 𝑔 is the magnitude of the Earth’s gravitation field.
This simple model assumes that the gravity is aligned parallel
to the 𝑧-axis and that there is no other acceleration than
gravity. Later in this paper, this assumption is relaxed with
the application of a variable measurement covariance in the
extended Kalman filter algorithm.

3.2. Adaptive Extended Kalman Filter with Gyroscope Bias
Estimation and Variable Covariances. An extended Kalman
filter (EKF) is a linearized approximation of an optimal
nonlinear filter, similar to the original Kalman filter [42].
Usually, the state and measurements are predicted with
the original nonlinear functions, and the covariances are
predicted and updated with a linearized mapping. In this
case, the measurement model is linear, and the state update
is nonlinear. Some attitude estimation algorithms based
on previously presented Kalman filters [3, 5, 12, 13, 25]
use a simpler linear model; however, in our work, we use
a nonlinear state-transition model for a purely nonlinear
problem.

We enhance the commonly used standard EKF algorithm
through a few additions. First, the filter is adapted to
changing measurements by using a variable time-dependent
state-prediction and acceleration-dependent measurement
covariances. Second, the filter is simplified andmade compu-
tationally more feasible by using gyroscope measurements as
control inputs in the EKF. Third, the magnitude of the DCM
vector is constrained to be always exactly one. Finally, the
filter is formulated for a variable sampling interval to tolerate
jitter or changes in sampling rate.

The filter principle is shown as a simplified block diagram
in Figure 1. The accelerometer measurements are used as a
measurement for the EKF, and gyroscope measurements are
used as control inputs in the prediction subsection. Later
on, the EKF is used to fuse these measurements in the
update subsection. In Figure 1, x refers to the EKF state vector
defined in (6), x̂ is an unnormalized predicted state, z is a
measurement, u is a control input, and ỹ

𝑘
is a measurement

residual. The colored blocks in the figure are updated or
estimated online. The accelerometer measurement is drawn
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Figure 1: A simplified block diagram of the DCM IMU filter. The
covariance computation has been hidden to simplify the work flow
of the EKF filter. The colored blocks are adjusted online.

using different subblocks for gravitational,𝑔, and nongravita-
tional accelerations, 𝑎, because nongravitational acceleration
is estimated using the predicted state in the EKF, thus
allowing these two to be separated.

The state-transition model to update angular velocities to
DCM states (4) and the measurement model to incorporate
accelerations (5) are formulated into an extended Kalman
filter that has six states: three for orientation (theDCMvector,
𝑛

𝑏
C
3
) and three for gyroscope biases (the bias vector, 𝑏b𝜔):
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The state-space model for the proposed system is the
following:
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In (7), 𝑓
𝑘
(x
𝑘
, u
𝑘
) is the discrete nonlinear state-transition

function at time index 𝑘. The state-transition function is pre-
sented in (8) (see Appendix for the derivation). The function
uses the state vector x

𝑘
in (6) and gyroscope measurements

as control input u
𝑘
. The measurement y

𝑘
in (7) is derived

with a linear and static observation model H presented in
(9). In (8), [C

3
×] is a rotation operator defined in (4), and

Δ𝑡 is a sampling interval which can vary in this formulation

of extended Kalman filter. In (9), 𝑔 is the magnitude of the
gravity
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In (7), v
𝑘
and w

𝑘
represent a zero mean Gaussian

white noise, and Γ
𝑘
= Δ𝑡 is a simplified time-dependent

model for the state-prediction noise. This simplified model
is derived assuming a Wiener white noise process in angular
velocity measurements (used as control inputs) which are
integrated into the DCM state and bias estimates over time
in each prediction step [43]. Therefore, we can formulate a
state-prediction model to have a linear relationship to time
step size. This time-dependent modification of the process
noise covariance allows the filter to behave more robustly
to changing sampling interval. When this is applied to a
covariance model, we simplify and assume that there is no
cross-correlation between states, thus yielding the following
equation for process noise covariance Q

𝑘−1
:

Q
𝑘
= Γ[

𝜎
2

𝐶3

I
3

0
3×3

0
3×3

(𝜎
𝜔

𝑏
)
2 I
3

] Γ
𝑇

= Δ𝑡
2

[

𝜎
2

𝐶3

I
3

0
3×3

0
3×3

(𝜎
𝜔

𝑏
)
2 I
3

] .

(10)

In (10), there are two parameters. First, 𝜎2
𝐶3

is the DCM-
state-prediction variance which is mainly driven by the
control input u (angular velocities), and thus the value of
the parameter can be approximated as the variance of noise
of gyroscope measurements. Second, (𝜎𝜔

𝑏
)
2 is the bias-state-

prediction variance. In this work, it is assumed that since
gyroscope biases drift very slowly, setting a tiny value for the
prediction variance of corresponding bias states is reasonable
(see experimental parameters in Table 1).This forces the filter
to trust its own bias estimate much more than its attitude
estimate, and bias estimates change only slightly during each
measurement update. Ourwork omits the optimal estimation
of these experimental parameters as acceptable parameters
can be found manually.

Themeasurement covarianceR
𝑘
in (7) is adjusted accord-

ing to the acceleration measurement as follows:

R
𝑘
= (

󵄩
󵄩
󵄩
󵄩
󵄩

𝑏a
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝜎
2

𝑎
+ 𝜎
2

𝑓
) I
3
, (11)

which is a robust covariance for acceleration measurements
based on the work by Li and Wang [16]. The proposed
measurement covariance R

𝑘
is built upon two parts: first, a

constant part which represents a variance of a measurement
noise for a triaxial accelerometer 𝜎2

𝑓
and second, a variable

part which represents a constant variance of estimated
acceleration 𝜎2

𝑎
scaled using the magnitude of the estimated
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Table 1: Experimental parameters for IMU algorithms.

Symbol Quantity Value

𝑔
The acceleration of gravity
(around Helsinki, Finland) 9.8189m/s2

Δ𝑡 Sampling interval ∼1/150 s

𝜎
2

𝐶3 ,0

Initial variance of the DCM
state 12 (rad/s)2

(𝜎𝜔
𝑏,0
)2 Initial variance of bias states 0.12 (rad/s)2

𝜎
2

𝐶3

DCM-state-prediction
variance 0.12 (rad/s)2

(𝜎𝜔
𝑏
)2 Bias-state-prediction variance 0.00012 (rad/s)2

𝜎
2

𝑓

Variance of accelerometer
measurement 0.52 (m/s2)2

𝜎
2

𝑎

Variance of estimated
acceleration 102 (m/s2)2

𝛽
A tuning parameter of
Madgwick’s filter 0.1

𝐾𝑝
A tuning parameter of
Mahony’s filter 0.5

nongravitational acceleration ‖
𝑏a
𝑘
‖, which is the difference

between themeasured acceleration and the estimated gravity.
These nongravitational accelerations are estimated using a
relation between a predicted DCM vector 𝑛

𝑏
Ĉ
3,𝑘

(the first part
of the predicted state vector in the EKF) and the current
accelerometer measurement 𝑏f

𝑘
deriving from (5):

𝑏a
𝑘
=
𝑏f
𝑘
− 𝑔

𝑛

𝑏
Ĉ
3,𝑘
. (12)

The proposed measurement covariance adaptation is
more effective than the standard approach, since it mod-
ifies the algorithm to become more robust against rapid
accelerations. However, if measurement errors are correlated
(i.e., there exists a long-term or constant nongravitational
acceleration), the assumptionunderlying the proposedmodel
would no longer hold. Therefore, this solution is only limited
to cases where nongravitational acceleration 𝑏a

𝑘
in (12) can

be assumed to be temporary.
For simplicity, since the sampling time of accelerometer

is assumed to be constant, these parameters (measurement
variances 𝜎2

𝑓
and 𝜎

2

𝑎
) should be tuned to include the effect

of the used sampling time. Time-dependent modifications
could be added similar to that for Q in (10). However, it
is not necessarily needed, as measurement updates can be
avoided if a measurement is lost, and the physical sampling
time in practice usually remains constant, although the
sampling interval might change or measurements might be
lost. For a practical implementation, parameter 𝜎2

𝑎
(the gain

for estimated gravitational acceleration) should be set to a
much larger value than 𝜎2

𝑓
(measurement noise). This makes

the adaptation to changing acceleration values significant
compared to measurement noise. For the values used, see
experimental parameters in Table 1.

The constraint, 𝑐, in (7) keeps the DCM vector 𝑛
𝑏
C
3,𝑘

used
in the first three states as a unit vector. The constraint is
defined according to

𝑐 (x
𝑘
) =

󵄩
󵄩
󵄩
󵄩
󵄩

𝑛

𝑏
C
3,𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
= 1. (13)

Many different nonlinear filters could be used to solve the
proposed estimation problem, for example, Gaussian filters
like extended and unscented Kalman filters [44]. We selected
an extended Kalman filter [43] as we wanted to minimize
computational load of the filter. We used the projection
method by Julier and LaViola Jr. [45] to handle the constraint
in (7). The derivation and practical implementation of the
proposed EKF and the constraint projection are explained in
Appendix.

3.3. Computation of Euler Angles from Filter States. To com-
pare our results to other filters and to use the estimate, the
estimated attitude should be able to be translated into an
Euler angle representation. As the proposed attitude filter
only estimates the partial attitude, corresponding to two out
of the three Euler angles present in the bottom row of the
rotation matrix in (1), the transformation of filter states to
Euler angle representation is not trivial. While the yaw angle
should be integrated separately, pitch 𝜃 and roll 𝜑 angles
can be estimated using the following equations that can be
derived from (1):

𝜃
𝑘
= arcsin (−𝐶

31,𝑘
) ,

𝜙
𝑘
= atan2 (𝐶

32,𝑘
, 𝐶
33,𝑘

) ,

(14)

where atan2 is an inverse tangent function with two argu-
ments to distinguish angles in all four quadrants [46] and
𝐶
3𝑖,𝑘

is the 𝑖th element of the DCM vector at time index 𝑘.
Yaw angle, 𝜓, can be integrated from bias-corrected

angular velocities with (1) and (2) using previously computed
roll, pitch, and yaw angles as a starting point. The yaw can
be resolved from the full DCM matrix C using the following
equation:

𝜓
𝑘
= atan2 (𝐶

21,𝑘
, 𝐶
11,𝑘

) , (15)

where 𝐶
𝑖𝑗,𝑘

is the 𝑖, 𝑗th index of the DCM matrix at time
index 𝑘. Note that indices 2, 1 and 1, 1 are not estimated in
the proposed filter. In (15), since the upper rows of the matrix
are needed, the whole rotation matrix needs to be computed
outside the filter if the yaw angle estimate is required.

3.4. TemperatureCalibrationMethod. MEMSgyroscopes and
accelerometers usually show at least some bias error, though
some gain error might be present as well. To be able to reduce
the effect of these errors and to achieve the best performance
of the IMU, it is important to calibrate the system before
feeding the data into any attitude estimation algorithm. The
gains and biases of the MEMS gyroscope and accelerometer
vary over time, a large part of which can be explained
by temperature changes in the physical instrument. Our
observations (Figures 11 and 12) indicate that while working
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near room temperatures, a linear model for temperature is
sufficiently accurate to model most of the changes in bias
and gain terms using low-cost MEMS accelerometers and
gyroscopes.

As our proposed IMU uses accelerometers to calibrate
gyroscope biases online, accelerometer calibration is essential
for reaching accuratemeasurements.Therefore, temperature-
dependent calibration is needed at least for the accelerom-
eters in order to estimate temperature-dependent bias and
gain terms for all the sensor axes if there is any possibility
of temperature changes in the environment. We used a linear
model for the gain and bias parameters to scale themagnitude
and reduce the bias from all gyroscope and accelerometer
measurements. The measurement model is derived from [6]
by adding the linearmodel of temperature for each parameter.
The used measurement model for each sensor axis 𝑖 ∈

{𝑥, 𝑦, 𝑧} is

𝑏

𝑓meas,𝑖 = 𝑝
𝑓𝑖

gain (𝑇)
𝑏

𝑓
𝑖
+ 𝑝
𝑓𝑖

bias (𝑇) ,

𝑏

𝜔meas,𝑖 = 𝑝
𝜔𝑖

gain (𝑇)
𝑏

𝜔
𝑖
+ 𝑝
𝜔𝑖

bias (𝑇) ,

(16)

𝑝
𝑓𝑖/𝜔𝑖

gain/bias (𝑇) = 𝑎
𝑓𝑖/𝜔𝑖

gain/bias𝑇 + 𝑏
𝑓𝑖/𝜔𝑖

gain/bias. (17)

In (16) and (17),𝑝𝑓𝑖gain/bias(𝑇) is a function of accelerometer
gain/bias as a function of temperature 𝑇, and 𝑝

𝜔𝑖

gain/bias(𝑇)

is a function of gyroscope gain/bias as a function of tem-
perature, both separately for each axis 𝑖. In the equation,
𝑏

𝑓meas,𝑖 is the accelerometer measurement, and 𝑏𝜔meas,𝑖 is
the gyroscope measurement for each axis 𝑖. All accelerations
and angular velocities are in body-fixed frame (𝑏). In (17),
the temperature-dependent linear model is expressed for all
different sensors and sensor axes for bias and gain. In the
equation, 𝑓

𝑖
and 𝜔

𝑖
are interchangeable similar to subscripts

gain and bias. As we used the linear model for all biases
and gains as a function of temperature, there are a total of
four parameters for each sensor axis in the calibration model
for the accelerometer and the gyroscope, thus yielding 24
unknown calibration parameters to tune.

The calibration of accelerometers can be performed
without accurate reference positions using the iterativemath-
ematical calibration method by Won and Golnaraghi [47].
According to the method, the three-axis accelerometer is
placed in six different positions and held stationary during
each calibration measurement. Measurements from these
six positions are then used in the algorithm iteratively to
optimize gains and biases for each axis of the accelerometer
sensor. Gyroscope biases and gains are estimated by com-
paring rotations to a reference measurement and forming a
linear model of gains and biases for all axes of the sensor.
Similar to Sahawneh and Jarrah [6] who use an instrumented
rotation plate to perform gyroscope calibration, we use one
rotation axis of the robot arm to accomplish the same task.
Whereas theirmethod has 12 parameters, we use 24 unknown
parameters. Our parameters can be acquired by using two
different strategies and single-temperature methods [6, 47].

Figure 2: KUKA robot arm and the two independent IMU devices
fixed to the tool. MicroStrain Inertia-Link is installed coaxially
below SparkFun 6DOF Digital IMU which is inside the topmost
aluminum enclosure.

The first strategy is having two different constant temper-
atures and performing the calibration [6] at these two differ-
ent temperatures. From the resulting two sets of calibration
parameters, the temperature-dependent linearmodel (16) can
be calculated by fitting a parameterized line (17) into two
points in a 12-dimensional space. The other strategy, which
could be used if constant temperatures cannot be arranged,
is separately cooling the device for one orientation out of
six needed in the presented methods and to perform the
calibration measurements as a function of temperature while
the device is gradually heated. Next, a linear regression line
can be fitted into the data for each sensor axis as a function of
temperature (similarly as in Figures 11 and 12).This regression
model can then be used to estimate constant temperature
averages for two different temperatures. These estimates
could be used similarly to the average measurements in the
first strategy.

4. Experiments and Results

Experiments were conducted using two independent IMU
devices, MicroStrain Inertia-Link [48] and a low-cost Spark-
Fun 6DOF Digital IMU breakout board (combination of an
ADXL345 accelerometer [49] and an ITG-3200 gyroscope
[50]). The reference measurement was acquired using a
KUKA Lightweight Robot 4+ [51] and a Fast Research
interface [52] for measuring the pose of the IMUs fixed to the
tool of the robot arm. Comparetti et al. [53] measured KUKA
LWR 4+ accuracy to be on average 1.18mm and 0.95∘ for
the translation and rotation components, respectively. Both
of the IMU devices were installed coaxially to the robot arm
(Figure 2) and aligned to have an axis orientation similar to
that for the end effector of the robot. The built-in calibration
procedure for MicroStrain Inertia-Link was performed prior
to data collection [48].

Since the developed algorithm should be robust for dif-
ferent parameters between different accelerometers and gyro-
scopes, only one common choice of experimental parameters
was used for both measurement devices. The comparison
between proposed algorithm and comparison algorithms is
thusmore general, as parameter tuning plays a less important
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role in the paper. The experimental parameters for the
proposed filter and comparison algorithms are shown in
Table 1. These same parameters (measurement and state-
prediction covariances and initial values) were used in both
IMUs for simplicity. These parameters were tuned using a
separate set of measurement data and a robot trajectory as
the reference measurement prior to the tests presented later
in this work.

The variance of the accelerometer was estimated using
measured accelerometer noise in a static situation, andDCM-
state-prediction variance was similarly estimated using mea-
sured gyroscope noise. Bias-state-prediction variance isman-
ually selected as an arbitrary value that is significantly
smaller than DCM-state-prediction variance. Similarly, ini-
tial values and the variance of estimated acceleration are
initially selected as arbitrary values that are large enough
and then tuned manually. The reference measurement was
compared to the estimate of the proposed algorithm, and
the arbitrarily selected parameters were manually changed
until the accuracy became satisfactory. The experimental
parameters for the comparison methods by Madgwick and
Mahony were selected as their default values (Table 1).

The used data sequence consists of two similar calibration
sequences to calibrate accelerometers and gyroscopes before
and after the actual test data. These calibration sequences
are used to calibrate measurements and remove any bias and
gain errors from the measurements using the temperature
based calibration method described in Section 3.4, except
for Inertia-Link measurements which were calibrated using
only a simpler temperature-non-dependent method [6].
Temperature changes could not be taken into account in the
Inertia-Link data, as the device does not give temperature
measurement together with its own orientation estimate.
Luckily, the temperature change during the test was small,
thus limiting the possibility of any remaining bias and gain
errors in the Inertia-Link test data after calibration.

After calibration of the test data, we separated the test
data into two separate test sequences. The first sequence, the
acceleration test, is designed to test the magnitude of errors
caused by induced linear accelerations. Our hypothesis is that
the larger linear acceleration is induced, the more likely it is
that there will be larger errors in the attitude estimate. The
second test sequence, the rotation test, is designed to test
dynamic performance of gyroscopes at different velocities
moving according to a preprogrammed path in 6D. The
rotation test is designed to be long enough to truly measure
drifts and give reliable error statistics. In addition, tests are
designed to have the same path in four times at different
velocities to cover different frequencies.

In addition to comparing different algorithms with fully
calibrated data, the sensitivity of the algorithms to gyroscope
biases was tested by adding artificial bias to fully calibrated
test data. In the third test, we added different magnitudes of
artificial bias to the test data (the same for all sensor axes
for simplicity). The root mean squared errors (RMSE) to the
reference measurement for yaw, pitch, and roll angles were
compared at different added biases. As Madgwick’s imple-
mentations of his and Mahony’s algorithms do not include
an online bias estimator, this bias test is not completely

fair; however, as there were no other freely available imple-
mentations to use, we performed our comparison for only
these algorithms (see details in Section 2).The gyroscope bias
tolerance test is presented only withMicrostrain Inertia-Link
data, which is less noisy and has better accuracies with all
algorithms in the other tests. The lower-cost, lower-quality
SparkFun 6DOFDigital IMUwould have yielded very similar
results between the compared algorithms.

For the first three tests, the orientation measurement of
the KUKA robot arm was used as a reference measurement
which was compared to yaw, pitch, and roll angles computed
using the proposed DCM-IMU algorithm as well as Madg-
wick’s [11] andMahony’s [21] algorithms as a comparison.The
built-in estimate of Microstrain Inertia-Link was also used
as a comparison. Errors to the reference measurement are
plotted separately for yaw, pitch, and roll angles in Figure 3.
The reference measurement is plotted to the topmost subplot
in the figure. The figure also shows the acceleration test and
the rotation test sequences. As can be noted, exact differences
between the compared algorithms are difficult to discern
from this plot. Therefore, differences between the algorithms
are later studied using a box-and-whiskers plot and rootmean
squared errors.

Finally, at the end of results section, we present the
effects of temperature change on the used low-cost IMU
device, SparkFun 6DOF Digital IMU [49, 50]. This section
is important, as it demonstrates the need for our linearly
temperature-dependent sensor calibration model and the
proposed extension to the previous calibration methods. We
also present our temperature-dependent calibration values
for our low-cost device.

4.1. Rotation Test. In the rotation test, IMUs were rotated
in 6D using a preprogrammed path. The same path was
driven four times, first at full speed and then by halving the
target velocity at each iteration. To use some well-known
standard rotation formalism, the quality of algorithms is
compared in Euler angles, which is easily computed for all
compared algorithms. To highlight the differences, the errors
are visualized using a box-and-whiskers plot in Figure 4. The
statistics in the figure are computed from the errors to the
reference measurement during the rotation test sequence.
The upper subplot shows yaw errors, and lower subplot
shows combined roll and pitch errors. As revealed in the
figure, roll and pitch errors behave quite similarly, as the
measured gravity helps similarly in their estimation (in the
𝑍𝑌𝑋 convention [40]); therefore, their errors are combined
into the same statistics plot in Figure 4. The initial yaw error
(caused by errors before the test sequence) is reduced from
the yaw estimates of all the compared methods.

All algorithms are computed for two separate devices,
Microstrain Inertia-Link (“A” in Figure 4) and SparkFun
6DOF Digital IMU (“B” in Figure 4). The label “Inertia-
Link” refers to the built-in orientation estimate ofMicrostrain
Inertia-Link, recorded in addition to raw triaxial accelera-
tions and angular velocities. As our paper focuses on partial
attitude estimation (roll and pitch), the main focus of the test
is given to the lower subplot in Figure 4. The yaw-error plot
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The reference measurement and measurement errors
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Figure 3: The three compared IMU algorithms, a built-in estimate
of Microstrain Inertia-Link, and the reference trajectory which is
performed using the KUKA LWR 4+ robot arm. An error to the
reference measurement is shown for each algorithm for yaw, pitch,
and roll angles. The visible time range covers only the performed
tests.The calibration sequences before and after the tests are omitted
from the figure.

(the upper subplot in Figure 4) indicates that yaw drift is not
significantly larger than other methods, although its value
is integrated outside the proposed partial attitude estimator.
The surprisingly good result observed in the yaw angle can
be explained by the accurate gyroscope bias estimates in
the proposed filter. The root mean squared errors (RMSE)
are also counted for all methods in Table 2, where the most
accurate results are highlighted for each angle. In this test,
the DCM method produced the most accurate algorithm
with Inertia-Link data and performed slightly worse than
Mahony’s method with the SparkFun data.

4.2. Acceleration Test. In the acceleration test, the IMUs were
rotated minimally, moving the KUKA robot linearly in the

Error statistics in the rotation test
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Figure 4: A box-and-whiskers plot showing error statistics in the
rotation test. The red line shows the median, the blue box is drawn
between the first and the last quadrants, and whiskers are drawn to
the most distant measurements.

Table 2: Root mean squared errors of the rotation test.

Method Yaw RMSE (deg) Pitch RMSE (deg) Roll RMSE (deg)
DCMA 1.57∗ 0.56∗ 0.61∗

MadgwickA 2.40 0.98 1.52
MahonyA 2.49 0.68 0.82
DCMB 3.91 1.29 1.46
MadgwickB 4.28 1.46 1.71
MahonyB 4.20 1.22 1.05
Inertia-Link 5.68 1.17 2.09
Data of Microstrain Inertia-Link (A) and SparkFun 6DOF digital IMU (B).
∗Themost accurate value in the test.

𝑥, 𝑦, and 𝑧 directions separately. The test sequence, shown
in Figure 5, consists of back and forth movement, first using
maximal velocity and then halving the target velocity at each
iteration.The reference velocity,measured usingKUKArobot
hand, is drawn on top of the figure. The purpose of the
test is to show unintended rotations in attitude estimates
during temporary accelerations.These errors caused by rapid
accelerations have not usually been considered in other
papers, but these accelerations are present in practical cases,
such as the estimation of a human body [7], a mobile phone
[4], or a legged robot [8] orientation.

The statistics for the acceleration test using fully cali-
brated data are presented using a box-and-whiskers plot in
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Reference measurement and accelerations during the acceleration test
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Figure 5: Reference velocities and accelerations during the accel-
eration test, at first 𝑥-axis, then 𝑦-axis, and last 𝑧-axis movement
separately.

Figure 6. In addition, rootmean squared errors are computed
for all methods in Table 3, where themost accurate results are
highlighted. As can be seen from the results, the proposed
DCM method is much more robust against rapid accelera-
tions than any of the compared methods for pitch and roll
angles. The yaw angle estimate is less accurate in the DCM
method than in Madgwick’s and Mahony’s methods. This is
caused by the bias estimate around the yaw axis in the DCM
method that is not working perfectly in this test, as there are
hardly any rotations present in the test data. In addition, this
test reveals that Mahony’s method is much more robust than
Madgwick’s method, which is highly prone to errors caused
by rapid accelerations in pitch and roll angles.

4.3. Gyroscope Bias Tolerance Test. The bias test was per-
formed in the same manner for the rotation test (results in
Figure 8) and for the acceleration test (results in Figure 9)
sequences. To save computation time, all algorithms were
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Figure 6: A box-and-whiskers plot showing error statistics in the
acceleration test. The red line indicates the median, the blue box
is drawn between the first and the last quadrants, and whiskers are
drawn to the most distant measurements which are not considered
as outliers (red + signs).

Table 3: Root mean squared errors of the acceleration test.

Method Yaw RMSE (deg) Pitch RMSE (deg) Roll RMSE (deg)
DCMA 1.19 0.42 0.17∗

MadgwickA 0.31 0.93 0.87
MahonyA 0.31 0.40 0.32
DCMB 2.29 0.26∗ 0.70
MadgwickB 0.14∗ 0.78 0.79
MahonyB 0.16 0.30 0.40
Inertia-Link 2.61 0.50 3.45
Data of Microstrain Inertia-Link (A) and SparkFun 6DOF digital IMU (B).
∗Themost accurate value in the test.

cold-started at the beginning of the test sequence, and bias
estimates are computed during the test sequence; that is, the
filter is reset to the default values as the test begins. This cold
start reduces the measured quality of our DCM method, as
the biases are assumed to be zero at the start of each test.This
first part of the test, when bias estimates are converging, adds
most of the measured errors to the DCMmethod with larger
values of induced bias.

For an example of biased behavior of all the compared
algorithms, a rotation test where the same bias of 1 deg./s is
added to all gyroscope measurements is shown in Figure 7.
As can be seen from the figure, for pitch and roll, Madgwick’s
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Figure 7: Errors in yaw, pitch, and roll as an artificial 1 deg./s bias is
added to all gyroscope measurements in the rotation test.

method performs almost as well as the DCM method, while
Mahony’s method shows the largest error. For the yaw
angle, our DCM is the only method that is able to cope
with biased gyroscope measurements and to obtain reliable
measurements. The reason for this is the fact that since our
method can reliably estimate gyroscope biases for each sensor
axis, the end result contains less integrated bias error. The
start transient caused by the cold start is also visible in the
figure.

To test bias tolerance, test sequenceswere computed using
different added biases changing from zero to seven degrees
per second separately for rotation and acceleration tests. For
both of the test sequences (the rotation test in Figure 8 and
the acceleration test in Figure 9), the proposed DCMmethod
is able to successfully find the induced bias and estimate it for
pitch and roll angles. The bias around the yaw angle for the
acceleration test in Figure 9 is not correctly estimated in the
EKF, since the test data includes minimally rotations (only
linear accelerations). The filter cannot estimate the induced
bias around the 𝑧-axis due to the lack of information about
the bias present in this test data (see the discussion about
the observability problem in Section 2). In the rotation test
(results in Figure 8), bias estimates work for all angles, and
the effect of induced bias is minimal compared to all other
presented algorithms. As can be noted from the figures, the
proposed DCM method has the smallest error in nearly all

RMSEs as a function of gyroscope bias (rotation test)
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Figure 8: Root mean squared errors of yaw pitch and roll angles in
the rotation test as a function of added constant bias in gyroscope
measurements.

cases where there is at least some unknown gyroscope bias
present.

Convergence of the bias estimate in the acceleration test
is interesting, as the test is a special pathological case for bias
estimate around the 𝑧-axis (corresponds to the yaw angle
seen in the upper subplot in Figures 6 and 9, as there are
no rotations). In this case, the yaw angle and gyroscope
bias estimates around the 𝑧-axis are not observable. The
behavior of the proposed filter, while estimating biases and
their corresponding variances, is shown in Figure 10 when
there is an induced bias of 1 deg./s in each gyroscope axis. In
the figure, biases for pitch and roll converge rapidly towards
the true value of 1 deg./s, whereas the bias estimate around
yaw converges very slowly. This happens as the filter receives
marginal information about the tiny rotations present in
the data. Even in this pathological special case with the
observability problem, the presented filter behaves correctly,
as demonstrated by the absence of any increase in the variance
of the bias estimate; that is, the filter remains stable.

4.4. Effects of Temperature to Bias. To test the sensitivity of
low-costMEMS IMUs to temperature changes, a long calibra-
tion sequence over different temperatures was performed for
the SparkFun 6DOFDigital IMU. First, the device was cooled
down and then held stationary for over 40 minutes. During
that time, the excess heat from the electronics warmed the
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RMSEs as a function of gyroscope bias (acceleration test)
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Figure 9: Root mean squared errors of yaw pitch and roll angles
in the acceleration test as a function of added constant bias in
gyroscope measurements.

IMU from 15∘C to 35∘C. The gyroscope and temperature
measurements are shown in Figure 11. A linear bias model of
themeasured temperature is plotted over the gyroscopemea-
surements in the figure. Similarly, stationary accelerometer
readings show a linear relationship to temperature, as shown
in Figure 12. These results indicate that both accelerometer
and gyroscope measurements are temperature-dependent
and that this relation can be modeled using a linear relation-
ship if working around room temperatures (25 ± 10

∘C). As
can be seen, the change in gyroscope bias can be as large as
0.5 deg./s.

In addition to presenting linearly temperature-dependent
gyroscope and accelerometer measurements, we used our
24 parameter calibration method to calibrate our SparkFun
6DOF Digital IMU. The acquired calibration parameters
are presented in Table 4 using a notation presented in (17).
As it can be noted, all temperature-dependent calibration
parameters 𝑎 are small but not negligible, which indicates
the minor but existing temperature-dependent effect in the
accelerometer and the gyroscope. In addition, it can be noted
that bias terms are more dependent on the temperature than
gain parameters.

5. Discussion

Experiments and Results tested our proposed algorithm with
multiple different tests and compared the results to two
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Figure 10: An artificial 1 deg./s bias is added to all gyroscope
measurements in the acceleration test. Gyroscope bias estimators
for bias around 𝑥 and 𝑦 converge rapidly towards the correct bias
(reference, the black slashed line). The corresponding standard
deviations estimated by the EKF are visualized in the same plots
using 1-sigma distance to the reference bias.

state-of-the-art algorithms. Table 5 summarizes the main
results and contributions of this paper.

Results of the first test (rotation test in Figure 4 and
Table 2) show that, in normal operation with fully calibrated
data (if there are no gyroscope biases or large dynamic
accelerations present), the DCM method has error statistics
quite similar to those for Mahony’s method and slightly
smaller errors than those obtained usingMadgwick’smethod.
The cheaper SparkFun 6DOF IMU is noisier (larger variance)
and has larger RMSE, though the maximal errors are similar
to those for the data of Inertia-Link. This test shows that
our proposed DCM method performs as well as the other
methods in the fully calibrated case.

Results of the acceleration test (in Figure 6 and Table 3)
show that when temporary nongravitational acceleration is
applied, all methods other than our proposed DCM method
induce large temporary errors to the attitude estimate, espe-
cially to the roll and pitch angles. As can be seen from the
RMSE estimates in Table 3, errors caused by these accelera-
tions do not increase the mean squared errors significantly.
It should be noted that while testing for the effect of rapid
accelerations, the RMSE does not fully reveal the effects
caused by these short and temporary accelerations. Instead,
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Gyroscope and temperature measurements as a function of time

Measurements
Linear temperature model

10

20

30

40

500 1000 1500 2000 25000
Time (s)

500 1000 1500 2000 25000
Time (s)

500 1000 1500 2000 25000
Time (s)

500 1000 1500 2000 25000
Time (s)

0.2
0.4
0.6
0.8

1

G
yr

o z
(d

eg
./s

)

2
2.2
2.4
2.6
2.8

G
yr

o x
(d

eg
./s

)

−1.5

−1

−0.5

G
yr

o y
(d

eg
./s

)
Te

m
pe

ra
tu

re
 (∘

C)

Figure 11: Gyroscope and temperature measurements as a function
of time for calibration purposes.The SparkFun 6DOFDigital IMU is
first cooled and then held stationary for a long period to warm up to
a near steady state temperature. A linear model of bias as a function
of temperature is drawn over the data.

Table 4: Calibration parameters for SparkFun 6DOF Digital IMU.

Parameter 𝑥-axis 𝑦-axis 𝑧-axis
𝑎
𝑓𝑖

gain −0.00049316 0.00040477 0.00102091

𝑏
𝑓𝑖

gain 1.06731340 1.03869310 0.98073082

𝑎
𝑓𝑖

bias −0.01551443 −0.00457992 −0.01929765

𝑏
𝑓𝑖

bias 0.99740194 0.05868846 0.48880423

𝑎
𝜔𝑖

gain 0.00027886 −0.00122424 −0.00246201

𝑏
𝜔𝑖

gain 0.99130982 1.03580126 1.08040715

𝑎
𝜔𝑖

bias −0.01188330 −0.00845710 0.00542382

𝑏
𝜔𝑖

bias 0.24566657 0.19236960 −0.21682853

error statistics in the box-and-whiskers plotted in Figure 6
better uncover the differences between these algorithms. As
can be noted, these filters behave quite differently in the
presence of dynamic accelerations. In the literature, these
rare events are typically ignored as outliers. However, as
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Figure 12: Accelerometer measurements as a function of tempera-
ture for calibration purposes. The SparkFun 6DOF Digital IMU is
first cooled and then held stationary for a long period to warm up to
near steady state temperature. A linear model of data as a function
of temperature is drawn over plots.

the attitude estimator usually requires robust behavior in all
cases, the behavior of the IMU algorithm should be tested for
these large temporary accelerations as well.

Our DCM method shows the most robust behavior
against these temporary nongravitational accelerations as
compared to the other algorithms. Madgwick’s method is
highly vulnerable to these events with errors nearly one
magnitude larger than the DCM method. Finally, the built-
in estimate of Microstrain Inertia-Link performs much more
unreliably than any of the compared methods. This test also
reveals the only drawback of our proposed DCM method:
the bias estimate around the yaw angle cannot be correctly
estimated if there are no rotations present in the data and
gravity is accurately aligned to 𝑧-axis of the sensor. Thus,
in this special case (the observability problem) with fully
calibrated data, the bias estimator impairs the heading angle
estimation.

The results of the gyroscope bias tolerance test are the
most important. As low-cost MEMS gyroscopes usually
introduce a temperature-related bias term into the measure-
ments, and as angular velocities measured by the gyroscopes
must be integrated to estimate the attitude, the bias error (i.e.,
zero level error in angular velocity measurements) causes
large errors in the attitude estimate. The results of the third
test (Figures 7, 8, and 9) show that our proposed DCM
method is able to handle even large bias errors and that as
little as 1 deg./s error in the bias can lead to large errors in all
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Table 5: Summary of performed experiments and results.

The test How it is tested? The main results

Rotation (Section 4.1)
Rotations and movement in 6D using
preprogrammed path performed at
different velocities.

All algorithms perform similarly well in the
standard test without any bias. DCM-IMU was
slightly precise compared to other algorithms.

Acceleration (Section 4.2) Linear movement separately to 𝑥, 𝑦, and
𝑧 directions at different velocities.

DCM-IMU is robust against rapid
nongravitational accelerations compared to
state-of-the-art algorithms.

Biases with rotation (Section 4.3)
Rotation test is performed with an
artificially added gyroscope bias in the
measurement data.

Only DCM-IMU can accurately estimate
gyroscope biases independent of the amount of
added bias.

Biases with linear acceleration and no
rotations (Section 4.3)

Acceleration test is performed with an
artificially added gyroscope bias in the
measurement data.

DCM-IMU can estimate gyroscope biases for 𝑥
and 𝑦 axes. The gyroscope bias around 𝑧-axis is
unobservable in this case, but the proposed
filter can handle the observability issue.

Temperature (Section 4.4)
Gyroscope and accelerometer are
measured as a function of temperature
while it is changed.

Gyroscope bias estimates change nearly by
0.5 deg./s as the temperature is changed by
20∘C. Similarly, accelerometer readings change
considerably.

the other comparedmethods. Mahony’s method is thenmore
vulnerable to added bias than Madgwick’s method, which
is able to cope with some bias errors around pitch and roll
angles. In contrast, ourDCMmethod can calibrate gyroscope
biases online without any extra information from a compass
or other sensors.

The last test and related results section demonstrate an
example of bias errors in a low-cost MEMS gyroscope and
accelerometer. As can be noted in Figure 11, the values of
the gyroscope bias estimates change nearly 0.5 deg./s as the
temperature is changed by 20∘C within less than an hour.
This reveals the importance of calibrating gyroscopes and
accelerometers using a temperature-dependent calibration
model, of stabilizing the temperature with a heater or cooler,
or of using an online bias estimator.The calibration ofMEMS
sensors is crucial, difficult task, for which the calibration
parameters may still change over time. Nevertheless, using a
temperature-dependent calibration model and the proposed
attitude estimation algorithm can enable the system to
perform reliably within changing temperatures and drifting
gyroscope biases.

6. Conclusion

In this work, we have proposed a partial attitude estimation
algorithm for low-cost MEMS IMUs using a direction cosine
matrix (DCM) to represent orientation.The attitude estimate
is partial, as only the orientation towards the gravity vector
is estimated. The sensor fusion of triaxial gyroscopes and
accelerometers was accomplished using an adaptive extended
Kalman filter.The filter accurately estimates gyroscope biases
online, thus enabling the filter to perform effectively even if
the calibration is inaccurate or some unknown slowly drifting
bias exists in the gyroscope measurements. The proposed
DCM IMU is made more robust against temporary contact

forces by using adaptive measurement covariance in the EKF
algorithm.

As indicated by our test results, the proposed DCM-IMU
algorithm should be used with low-costMEMS sensors when
at least one of the following is true: (a) only accelerometer and
gyroscope measurements are available, (b) there exist large
temporary accelerations, (c) there exist unknown or drifting
gyroscope biases, or (d) measurements are collected using
a variable sampling rate. However, our proposed method
should not be used if constant nongravitational accelerations
are present, nor would it be needed if gyroscopes are
accurately calibrated and no drifting biases are present in
the measurements (i.e., an error-free system). Long-term or
constant nongravitational accelerations will be mixed with
the estimated gravitational force, as there are no external
measurements to separate them.

Finally, ourmethod is best suited for low-costMEMS sen-
sors with drifting biases and erroneous measurements. It also
eliminates the need for commonly usedmagnetometers while
estimating biases for gyroscope measurements. The method,
however, is not designed to give an absolute heading; instead,
it is best suited for measuring absolute roll and pitch angles
and a minimally drifting relative yaw angle. An open source
implementation of the proposed algorithm is available for
MATLAB and C++ at https://github.com/hhyyti/dcm-imu.

Appendix

The proposed system model presented in (7) can be derived
from the continuous-time dynamic model:

ẋ (𝑡) = Atx (𝑡) + Btu (𝑡) , (A.1)

where u is a control input (for angular velocities), At is a
state-transition model, Bt is a control-input model, and x is
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the state vector. The continuous-time dynamic model of the
system in At and Bt is formulated as

At = [
0
3×3

− [C
3
×] (𝑡)

0
3×3

0
3×3

] ,

Bt = [
[C
3
×] (𝑡)

0
3×3

] .

(A.2)

In (A.2) At and Bt are state-dependent as the DCM
vector [C

3
×] changes along the three first states. This makes

the filter nonlinear. The rotation operator [C
3
×] and the

control-input u are defined in (4). Thereby, the dynamic
model can be understood as a rotation caused by angular
velocity measurements and a countervice rotation caused
by the estimated gyroscope biases. The model is discretized
using the Euler method, and the following discrete nonlinear
state-transition function is formed:

x̂
𝑘|𝑘−1

= 𝑓
𝑘−1

(x
𝑘−1

, u
𝑘−1

)

= [

I
3

−Δ𝑡 [C
3
×]
𝑘−1|𝑘−1

0
3×3

I
3

] x
𝑘−1|𝑘−1

+ [

Δ𝑡 [C
3
×]
𝑘−1|𝑘−1

0
3×3

] u
𝑘−1

.

(A.3)

Equation (A.3) is similar to (8); however, the notation is
changed according to syntax in [43]. In the equation, 𝑘 | 𝑘−1
denotes the predicted value at time step 𝑘 using the values
of previous time step 𝑘 − 1. This complex notation is used to
differentiate between prediction and measurement phases in
Kalman filter [43]. Δ𝑡 is a sampling interval which can vary
in this formulation of the extended Kalman filter, x

𝑘−1|𝑘−1
is

a normalized state estimate of the previous time step, and
x̂
𝑘|𝑘−1

is an unnormalized predicted (a priori) state estimate of
current time step. In the EKF, u

𝑘−1
is usually a control input

of the last round; however, in this case, we assume that our
gyroscope measurement at the current round is analogous
to the control of the last round. The 𝑘 − 1 notation is left
to indicate the last round in order to be compatible with
standard Kalman filter notation [43]. A similar modification
has previously been used by [14].

The estimate covariance matrix P is updated in the
prediction step using the following equations:

P̂
𝑘|𝑘−1

= F
𝑘−1

P
𝑘−1|𝑘−1

F𝑇
𝑘−1

+Q
𝑘−1

,

F
𝑘−1

= I
6
+ [

−Δ𝑡 [U×]
𝑘−1|𝑘−1

−Δ𝑡 [C
3
×]
𝑘−1|𝑘−1

0
3×3

0
3×3

] ,

[U×]

=

[
[
[

[

0 − (
𝑏

𝜔
𝑧
−
𝑏

𝑏
𝜔

𝑧
)
𝑏
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−
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𝑏
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𝑦
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𝜔
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𝑏
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𝑧
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𝑏
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−
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𝑥
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𝑏
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−
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]
]
]

]

.

(A.4)

In (A.4), the linearized state-transition matrix F
𝑘−1

is the
Jacobian of the nonlinear state-transition function in (A.3).

P̂
𝑘|𝑘−1

is the unnormalized predicted a priori estimate of
the estimate covariance. The angular velocity tensor [U×]
is analogous to [𝑏𝜔

𝑛𝑏
×] in (2). The only difference between

these is that, in [U×], estimated gyroscope biases (bias states)
are reduced from measured angular velocities that are only
present in (2). Hence, [U×] represents a bias corrected
angular velocity tensor.

Measurement update and a posteriori update of states
are computed using the Kalman filter algorithm [43] in the
following way:

ỹ
𝑘
= z
𝑘
−Hx̂
𝑘|𝑘−1

,

S
𝑘
= HP̂

𝑘|𝑘−1
HT

+ R
𝑘
,

K
𝑘
= P̂
𝑘|𝑘−1

HTS−1
𝑘
,

x̂
𝑘|𝑘

= x̂
𝑘|𝑘−1

+ K
𝑘
ỹ
𝑘
.

(A.5)

In (A.5), z
𝑘
is a vector of accelerometer measurements,

H is the observation model, x̂
𝑘|𝑘−1

is the predicted (a priori)
state estimate, ỹ

𝑘
is a measurement residual, P̂

𝑘|𝑘−1
is the

unnormalized predicted (a priori) estimate covariance, R
𝑘
is

themeasurement noise covariance, andK
𝑘
is theKalman gain

at time index 𝑘.
The estimate covariance matrix P is updated using the

Joseph form of the covariance update equation, which is
computationally robust against rounding errors, and the
result is granted to be always positive definite and symmetric
[43, 54]:

P̂
𝑘|𝑘

= [I − K
𝑘
H] P̂
𝑘|𝑘−1

[I − K
𝑘
H]T + K

𝑘
R
𝑘
KT
𝑘
. (A.6)

In (A.6), K
𝑘
is the Kalman gain, H is the observation

model, P̂
𝑘|𝑘−1

is the unnormalized predicted (a priori) esti-
mate covariance, R

𝑘
is the measurement noise covariance,

and P̂
𝑘|𝑘

is the unnormalized updated (a posteriori) estimate
covariance at time index 𝑘.

Because the DCM vector presents the bottom row of a
rotation matrix, which is a unit vector, the magnitude of this
vector must always be exactly one. Therefore, it is important
to implement this constraint into the proposed filter. For this
purpose, we used the projectionmethod by Julier and LaViola
Jr. [45]. In our filter, this is implemented by normalizing the
state vector x and dividing the DCM vector by its magnitude
𝑑:

x
𝑘|𝑘

= 𝑔 (x̂
𝑘|𝑘
) = [

[

1

𝑑

I
3

0
3×3

0
3×3

I
3

]

]

x̂
𝑘|𝑘
,

𝑑 = √𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
.

(A.7)
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The effects of normalization are projected into the esti-
mate covariance matrix P using Jacobian matrix as a linear
approximation of the normalization function 𝑔(x̂

𝑘|𝑘
):

P
𝑘|𝑘

= JP̂
𝑘|𝑘
JT,

J =
𝜕𝑔 (x̂
𝑘|𝑘
)
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.

(A.8)

In (A.8), J is the analytic solution for the Jacobian of the
normalization function and 𝑑 is the magnitude of the DCM
vector defined in (A.7).
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