EEN-E4004 Fundamentals of HVAC Design

Lecture 27-3.2019
Water and Sewage design
M.Sc Juho Lepistö

Water and sewage design

- Connection point statement
- Connection points
- Minumun heigth of drainage point against backwater (for sewage and stormwater)
- Water pressure level in connection point
- Site plan / Outside installations
- External drainage
- Stormwater dimensioning
- Main water pipe
- Gullys
- PVK, RK, JVTK/SVTK, TP
- Fixtures (domestic water and sewer)
- Examples
- Domestic water
- Nominal flows, measuring flow
- Pressure level
- Pipe sizes (velocity, pressure drop)
- Installation methods, parts, materials
- Hot water circulation
- Insulation
- Sewage
- Nominal flows, measuring flow
- Materials, parts
- Sewer ventilation, access covers, installation methods.
- Insulation

Connection point statement

- Given by local waterworks company or city (f.ex HSY)
- Location of connection points
- Connection sizes and heights
- Minumum height of drainage device
- Water pressure at connection point

Site plan / Outside installations

- Main water pipe
- Material usually plastic (PE)
- Under building, installation in protecting pipe (replaceability)
- Sewage pipes outside
- At least one inspection gully needed between building and connection point
- First inspection gully must be located right outside building wall
- Installation under frost depth or insulation and defreezing cable
- Measuring according calculation from builidings sewage points
- Usually DN110 in one-family houses
- The pipe size must not be reduced in the flow direction
- Gully (JVTK = jätevesi tarkastuskaivo = sewer inspection gully)
- See examples

Site plan / Outside installations

- Stormwater
- Measuring flow $=$ Area*k*0,015 l/s/m2 (0,010...0,020 l/s)
k_{n} valumiskerroin osa-alueella, <- Flow coefficient
$\mathrm{k}=1,0$, Hard surfaces: roofs, tarmac, concrete etc.
$\mathrm{k}=0,7$, Gravel surfaces
$\mathrm{k}=0,3$, Lawn and other soft surfaces
- Pipe material usually plastic
- Pipe size (D1, appendix 7, picture 2)
- Sewers installed under ground DN75 is minimum.
- The pipe size must not be reduced in the flow direction
- Underdrainage connection usually through non-return valve
- Gullys (PVK, RK, SVTK, TP)
- See examples

Water and sewage fixtures

- Examples for domestic water fixtures
- Toilet seat
- Ido Glow 60
- CW connection nominal flow $=0,1 \mathrm{I} / \mathrm{s}$, pressure drop 150 kPa
- Sewage connection DN110, nominal flow $1,8 \mathrm{l} / \mathrm{s}$
- Basin + tap
- Oras Safira tap
- Ido Glow 60 wash basin
- Shower
- Oras Optima
- Kitchen sink + tap
- Oras Optima
- Franke sink
- Technical room sink + tap
- Kavika sink
- Oras tap
- Floor drains
- Vieser, Purus etc.

- Water post
- Oras, etc.

Domestic water systems

- Domestic water pipe materials
- Copper (soldering, compression couplers)
- Plastic (PEH, PEX) (welding, compression couplers)
- Composite (compression couplers)
- Stainless steel, AISI 304 (big sizes $\leq \mathrm{DN65}$) (welding, flange)
- Dimensioning water pipes by D1 (Appendix 2)
- Nominal flows (Table 1)
- Basin 0,1 l/s, Sink 0,2 l/s, Shower 0,2 l/s, Bath tub 0,3 l/s
- Dimensioning flow (Table 2)
- Pipe sizes (Table 4 and 5)
- PEX connection pipes from manifold 15 mm
- Velocity circa $\leq 1,5 \ldots 2 \mathrm{~m} / \mathrm{s}$
- Pressure in connection pipe near tap should be circa 200 kPa to reach the nominal flow (minimum 70\%). Pressure needed after water meter is normally $300 \ldots 400 \mathrm{kPa}$, pressure reduction valve in case when pressure is too high.
- dP of main water pipe ($\sim 10 \mathrm{kPa}$), dP of water meter ($\sim 25 \mathrm{kPa}$)

Domestic water systems

- Hot water circulation (Appendix 2)
- Hot water waiting time max. 20s
- Hot water minimun temperature $55^{\circ} \mathrm{C}$
- Hot water circulation pipe velocity $0,5 \mathrm{~m} / \mathrm{s}$ ($\mathrm{max} 1,0 \mathrm{~m} / \mathrm{s}$)
- Heat loss from hot water pipes ca. $10 \mathrm{~W} / \mathrm{m}$
- Connecting space heaters or floor heating is forbidden.
- Pipe insulations
- According to LVI-card (LVI 50-10345)
- Vapor proof surcafe for cold water pipe insulations
- Visble connection pipes without insulation
- Plastic connection pipes (15M) installed in protecting pipe without insulation
- Sewer isulated against freezing.
- Sewer vent pipe insulated in cold attics

Sewage systems

- Sewage pipe materials
- Commonly used Plastic, PP (with rubber ring joint)
- Under ground PP or PVC (rubber ring joint)
- Stainless steel, cast iron, copper, PE,
- Dimensioning sewage pipes by D1 (Appendix 4)
- Nominal flows, NF (Table 1)
- Basin 0,3 l/s, Sink 0,6 I/s, Shower to galley 0,6 l/s, Toilet 1,8 I/s
- Dimensioning flow (Picture 1)
- Sewer size and minimum fall (Picture 3 for plastic)
- Minimum sewer connection size for toilet is DN100
- The pipe size must not be reduced in the flow direction
- At least one sewer ventilation pipe must be taken above roof
- Sewage ventilation pipe size $\sum \mathrm{NF} 55 \mathrm{I} / \mathrm{s}$ DN70, otherwise DN100 (Table 4)

Sewage systems

- Sewer design (Appendix 4)
- Sewer must be equipped with needed access covers (see D1, Table 3)
- In the bottom of every vertical risers (min. 400 mm from floor)
- Every 20 meters in horizontal lines
- Washing machine and dish washer can be drained trough other sewer point water trap.
- Dry galley in sauna can be drained in other galley with water trap
- Sewer insulations
- Sewer insulated against freezing. Electric defreezing cable when neccesary
- When installed above frost depth
- When installed in subfloor space
- When installed outiside
- Sewer vent pipe insulated in cold attics
- Acoustic insulation in critical spaces (and/or spesific dB-sewer)
- Storm water drainage pipes needs condensate insulation if installed indoors.

Water and sewage design

- For backround information
- Talotekniikkainfo.fi
- Building code collection, part D1 (https://www.finlex.fi/data/normit/28208D1 2007.pdf)

