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Sensors and machine perception are the key 

components for modelling the environment 
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Perception for Mobile Robots
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Perspective camera model
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Perspective projection in camera model
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Perspective projection, from scene points to 

pixels
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Perspective projection, from scene points to 

pixels
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• Expressed in matrix form and 

homogeneous coordinates:



Perspective projection, from scene points to 

pixels
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Camera Calibration
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Stereo Vision versus Structure from Motion 
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Stereo vision: 

is the process of obtaining depth information from a pair of 

images coming from two cameras that look at the same 

scene from different but known positions

Structure from motion, Motion vision: 

is the process of obtaining depth and motion information 

from a pair (sequence) of images coming from the same 

camera that looks at the same scene from different 

positions 



Depth from Stereo
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• From a single camera, we can only deduct the ray on which each 

image point lies 

• With a stereo camera (binocular), we can solve for the intersection 

of the rays and recover the 3D structure



Stereo Vision,  simplified case 
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Disparity in inversely proportial to distance



Stereo Vision, general case 
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Stereo Vision, Correspondence
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Stereo Vision, search in 1D with the epipolar

constraint 
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Stereo Vision, Stereo Rectification
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• Reprojects image 
planes onto a common 
plane parallel to the 
baseline 

• It works by computing 
two homographies
(image warping), one 
for each input image 
reprojection

• As a result, the new 
epipolar lines are 
horizontal and the 
scanlines of the left and 
right image are aligned 



Stereo Vision,  disparity map
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Stereo Vision,  disparity map
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Correspondence problem
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Effects of window size W 
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Stereo Vision,  summary
1. Stereo camera calibration -> compute camera relative

pose

2. Epipolar rectification -> align images & epipolar lines

3. Search for correspondences

4. Output: compute stereo triangulation or disparity map

5. Consider how baseline & image resolution affect 

accuracy of depth estimates 
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Filtering, Edges, and Point-features

• Convolution for filter

• Correlation for matching

• We can use correlation for template matching  to detect 
locations similar to templates
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Derivative Theorem of Convolution in 1D 

• Gaussiam smoothing + derivative

filtering
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Zero-crossings with Laplacian in 1D  
• Gaussiam smoothing + Laplacian filtering in one

operation
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2D Edge Detection
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2D Edge Detection with Canny edge detector
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Point-feature extraction

• Harris corners 

• SIFT features 

• and more recent 
algorithms from the 
state of the art

• Application: visual 
odometry

• Videos from the 
Robotics and 
Perception Group: 
http://rpg.ifi.uzh.ch
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Corner Detection
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Corner Detection
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How do we implement Harris corner detector 
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How do we implement Harris corner detector 

31



How do we implement Harris corner detector 
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Harris corner detector, Interpretation of matrix M 
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Harris corner detector, Interpretation of matrix M 

What does this matrix M reveal?
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Harris corner detector, Visualization of 2nd moment 

matrices
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Harris corner detector, Interpreting the eigenvalues
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Harris corner detector: Workflow by ETH
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Harris corner detector: Workflow by ETH
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Harris corner detector: Workflow by ETH
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Harris corner detector: Workflow by ETH
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• Corner response C is invariant to image rotation,.

• Probably the most widely used and known corner detector



Blob Detection
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Blob features
A blob is an image pattern that differs from its neighbors in 
intensity and texture (e.g., a circle, a star, an ellipse, or any 
particular patch which is not a corner!) 

• Has less localization accuracy than a corner (e.g., what’s the 
center of a blob?) 

• It’s more distinctive than a blob 

The most popular blob detectors are

• LoG: Laplacian of Gaussian operator

• DoG: Difference of Gaussian

• SIFT (it uses DoG features) 

• SURF (it’s an fast implementation of SIFT) 

• CenSurE

• MSER 
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CenSurE features

Approximates LoG/DoG by octagonal box filters 
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MSER blob detector

Looks for elliptical regions of uniform color 
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SIFT features
SIFT (Scale Invariant Feature Transform) is an approach for detecting and 
describing regions of interest (blobs) in an image developed by D. Lowe (Univ. of 
Bristish Columbia, Canada) in 2004 and today used in most vision applications 
(Google image search, image retrieval, place recognition, and consumer cameras)

After 11 years since its invention, SIFT is still the best performing and most robust 
feature descriptor; SURF, BRIEF, BRISK are suboptimal (way more efficient than 
SIFT but not as robust to changes in view point)! 

Things you should remember: 

• SIFT detects DoG features 

• SIFT is scale invariant: the same features can be re-detected from images 
taken with significant distance from each other (i.e., re-scaled versions of the 
image) 

• SIFT is also invariant to orientation and changes of view-point (up to 60 
degrees) 

• SIFT introduces a “descriptor” based on gradient orientations, which is more 
robust that just using pixel intensities 
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SIFT features summary
SIFT features are reasonably invariant to changes in: 

• Rotation 

• Scaling 

• Small changes in viewpoint, 

• Illumination 

Very powerful in capturing and describing distinctive features but also computationally 
demanding 

SIFT feature detector Demo: 

for Matlab, Win, and Linux (freeware) 

http://www.cs.ubc.ca/~lowe/keypoints/  

http://www.vlfeat.org/~vedaldi/code/sift.html 

Make your own panorama with AUTOSTITCH (freeware): 

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html 

Open-source code for FAST, BRIEF, BRISK and many more, available at the OpenCV library 
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Place Recognition, Line Extraction
• Place recognition using Vocabulary Tree

• Line extraction from images 

• Line extraction from laser data 
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Taking this a step further… becomes 

computationaly unfeasable
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Robot: Have I been to this place before? 

• Building the Visual Vocabulary
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Inverted File index
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Efficient Place/Object Recognition
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K-means clustering - Review

• k-means clustering is an algorithm to 
partition 𝑛 observations into 𝑘 clusters 
in which each observation 𝒙𝑗 belongs 
to the cluster with center 𝒎𝑖

• It minimizes the sum of squared 
Euclidean distances between points 𝒙𝑗
and their nearest cluster centers 𝒎𝑖

Algorithm: 

• Randomly initialize 𝑘 cluster centers 

• Iterate until convergence: 
– Assign each data point 𝒙𝑗 to the nearest 

center 𝒎𝑖

– Recompute each cluster center as the 
mean of all points assigned to it 
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K-means clustering - Demo 

Source: http://shabal.in/visuals/kmeans/1.html 
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http://shabal.in/visuals/kmeans/1.html


Recognition with K-tree – Populate the 

descriptor space
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Recognition with K-tree – Populate the 

descriptor space
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Recognition with K-tree – Populate the 

descriptor space
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By Klustering
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FABMAP [Cummins and Newman IJRR 2011] 

• Place recognition for robot 
localization 

• Use training images to build the 
visual vocabulary 

• At a new frame, compute: 
– P(being at a known place) 

– P(being at a new place) 

• Captures the dependencies of 
words to distinguish the  most 
characteristic structure of each 
scene  (using the Chow-Liu 
tree) 

• Binaries available online: 
http://www.robots.ox.ac.uk/~mj
c/Software.htm 
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FABMAP example 

• p = probability of images coming from the same place 
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FABMAP example 

• p = probability of images coming from the same place 
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Robust object/scene recognition

• Visual Vocabulary holds appearance information but 

discards the spatial relationships between features 

• Two images with the same features shuffled around in 

the image will be a 100% match when using only 

appearance information. 

• If different arrangements of the same features are 

expected then one might use geometric verification 

– Test the k most similar images to the query image for geometric 

consistency (e.g. using RANSAC) 

– Further reading (out of the scope of this course): 

– [Cummins and Newman, IJRR 2011] 

– [Stewenius et al, ECCV 2012] 
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Line extraction from images

Suppose that you have been commissioned to implement 

a lane detection for a car driving-assistance system. How 

would you proceed? 

Classical reference; Ernst D Dicksmanns: Dynamic vision 

for control of motion, Springer
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Line extraction
How do we extract lines from edges? Two popular line extraction 

algorithms:

1. Hough transform (used also to detect circles, ellipses, and any sort 

of shape) 

2. RANSAC (Random Sample Consensus) 
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Hough transform 
How do we extract lines from edges? Two popular line extraction 

algorithms:

• Finds lines from a binary edge image using a voting procedure 

• The voting space (or accumulator) is called Hough space

• Each point in image space, votes for line-parameters in Hough 

parameter space  
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Hough transform 

Problems with the (𝑚, 𝑏) space: 

Unbounded parameter domain 

• 𝑚, 𝑏 can assume any value in [−∞, 

+∞]

Alternative line representation: polar 

representation 
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Hough transform
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Hough transform, examples
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Notice, however, that the Hough only find the parameters of the line, not 

the ends of it. 

Hough is suitable for extracting other geometric forms having finite number 

of parameters, circles etc.



RANSAC (RAndom SAmple Consensus) 

• RANSAC has become the standard method for model fitting 

in the presence of outliers (very noisy points or wrong data) 

• It can be applied to line fitting but also to thousands of 

different problems where the goal is to estimate the 

parameters of a model from noisy data (e.g., camera 

calibration, structure from motion, DLT, homography, etc.) 

• Let’s now focus on line extraction 

M. A.Fischler and R. C.Bolles. Random sample consensus: A 

paradigm for model fitting with applicatlons to image analysis 

and automated cartography. Graphics and Image Processing, 

24(6):381–395, 1981. 
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC

How many iterations does RANSAC need?  

• Ideally: check all possible combinations of 2 points in a 

dataset of N points. 

• Number of all pairwise combinations: N(N-1)/2 

=> computationally unfeasible if N is too large.  

example: 10’000 edge points => need to check all 10’000*9999/2= 50 

million combinations! 

• Do we really need to check all combinations or can we stop 

after some iterations?

– Checking a subset of combinations is enough if we have a rough 

estimate of the percentage of inliers in our dataset 

• This can be done in a probabilistic way 
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RANSAC- Algorithm
Let A be a set of N points 

1. repeat

2. Randomly select a sample of 2 points from A 

3. Fit a line through the 2 points 

4. Compute the distances of all other points to this line 

5.       Construct the inlier set (i.e. count the number of points whose  
distance < d) 

6. Store these inliers 

7. until maximum number of iterations k reached 

8. The set with the maximum number of inliers is chosen as a solution to 
the problem 

RANSAC is really robust in eliminating outlayers. 

Typical applications in robotics are: line extraction from 2D range data, plane 
extraction from 3D data, feature matching, structure from motion, camera 
calibration, homography estimation, etc. 
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Algorithm 1: Split-and-Merge (standard)

• Popular algorithm, originates from Computer Vision. 

• A recursive procedure of fitting and splitting. 

• A slightly different version, called Iterative end-point-fit, simply connects the end 

points for line fitting. 

Let S be the set of all data points 

Split

• Fit a line to points in current set S 

• Find the most distant point to the line 

• If distance > threshold => split set & repeat with 

left and right point sets 

Merge

• If two consecutive segments are collinear enough, obtain 

the common line and find the most distant point 

• If distance <= threshold, merge both segments 
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Algorithm 1: Split-and-Merge (iterative end-

point-fit) 
• Iterative end-point-fit: simply connects the end points for line fitting
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Algorithm 2: Line-Regression 

• “Sliding window” of size Nf points 

• Fit line-segment to all points in each window 
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Algorithm 2: Line-Regression 

• “Sliding window” of size Nf points 

• Fit line-segment to all points in each window 
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