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Sensors and machine perception are the key
components for modelling the environment
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Perception for Mobile Robots

Places / Situations

A specific room, a meeting situation, ...

Servicing / Reasoning

Objects

Doors, Humans, Coke bottle, car, ...

Interaction

Features
Comners, Lines, Colors, Phonemes, ...

Navigation

Raw Data

Vision, Laser, Sound, Smell, ...
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Perspective camera model

= For convenience, the image plane is usually represented in front of C such that
the image preserves the same orientation (i.e. not flipped)

Z. = optical axis
= A camera does not measure = 9P

distances but angles!

O = principal pointv 0. .
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Perspective projection in camera model

= The Camera point PIC=(XIC,0,2lC )TT projects to p=(x, ») onto the
image plane

= From similar triangles: ZE?}T’”C'”'

XC
—=—t=x= s ¢ A X,
f ZC 7 C_/x

¢ <«———> 0 lmage Plane

- A
-

J
= Similarly, in the general case: Zl
. A
l =< — y= ‘fI/C
f Zc ZC
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Perspective projection, from scene points to
pixels

= To convert p, from the local image plane coordinates () to the pixel
coordinates (z,7), we need to account for:

: : : I I
= The pixel coordinates of the camera optical center 0=(«J0,200 ) (0.0) u mage plane

= Scale factor # for the pixel-size l
=

S

u= ul0 +kx=>+ wl0 Y ifXIC/

ZiC

v=vl0 +hy=+ vl0 +AfVIC/ -
zic S

= Use Homogeneous Coordinates for linear mapping from 3D to 2D, by
introducing an extra element (scale):

p: ’ p:
Vv

,, Aalto University
School of Electrical

Engineering 6

B
I
~
-




Perspective projection, from scene points to
pixels " i

* Expressed in matrix form and — P
homogeneous coordinates:

Aul [ 0 u, X,

Avi=10 &k v || Y

A 0 0 1|z

(D | N
_lo @ v lly | Bl I Focal length in pixels
0 0 1__Zc "Za"_ T3 ntringic parameters matrix
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Perspective projection, from scene points to
pixels

X
X, heo o hal|[X 8 YH
Yo\ =|ry 1y || Y, |+|GL] = R | T|-|"
Z V4 t 2
c By I3 I3 w 3 ) P=P,

i XC W
Alv|=K|Y AN
i w
1 Z,
Extrinsic
Parameters
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Camera Calibration

= Use camera model to interpret the projection from world to image plane

= Using known correspondences of p & P, we can compute the unknown parameters K, R, T by applying the
perspective projection equation

= ... so associate known, physical distances in the world to pixel-distances in image Projectioln Matr'&g -
u i
Extracted comers Extracted comers Y :
-t Alv| 4 K|RIT]| O

N

1 s

Ye (i camees amme)

8 8 883

Extrinsic parameters

300
Xc n comors Fame)

,, Aalto University
School of Electrical

Engineering 9



Stereo vision:

IS the process of obtaining depth information from a pair of
Images coming from two cameras that look at the same
scene from different but known positions

Structure from motion, Motion vision:

IS the process of obtaining depth and motion information
from a pair (sequence) of images coming from the same
camera that looks at the same scene from different
positions
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Depth from Stereo
 From a single camera, we can only deduct the ray on which each
Image point lies
« With a stereo camera (binocular), we can solve for the intersection
of the rays and recover the 3D structure

3D Object

Left Image m a\ Right Image

Left Right
Center of projection Center of projection
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Stereo Vision, simplified case

An ideal, simplified case assumes that both cameras are identical and

aligned with the x-axis
Can we find an expression for the depth Z/Z of point ALV ?
From similar triangles:

S
7 b
P XP ZP = f
fooo-u, U —u
Z, b-X,
Disparity

Disparity is the difference in image location of the
projection of a 3D point in two image planes

Baseline is the distance between the two cameras

Disparity in inversely proportial to distance

Z P, =(XP:YPaZP)

Baseline
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Stereo Vision, general case

= To estimate the 3D position of 2LIW we can construct the system of equations
of the left and right camera

* Triangulation is the problem of determining the 3D position of a point given a
set of corresponding image locations and known camera poses.

ul -Xw ]
Left camera:
Py =Xy X5 ) set the world frame to coincide 2 =4|vi|= K| ¥,
~ with the left camera frame 1 Z:.
u, .
e, Right camera: p, =A |v, [=KR|Y, |+T
C/\_—/' 1 Zw
(R. 1)
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Stereo Vision, Correspondence

= Goal: identify corresponding points in the left and right images, which are the
reprojection of the same 3D scene point

= Typical similarity measures: Normalized Cross-Correlation (NCC) , Sum of Squared
Differences (SSD), Sum of Absolute Differences (SAD), Census Transform

= Exhaustive image search can be computationally very expensive! Can we make the
correspondence search in 1D?
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Stereo Vision, search in 1D with the epipolar
constraint

= The epipolar plane is defined by the image point p and the optical centers
* |Impose the epipolar constraint to aid matching: search for a correspondence

along the epipolar line

epipolar line

L

epipolar plane

epipolar line

.

G
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Stereo Vision, Stereo Rectification

Reprojects image
planes onto a common
plane parallel to the
baseline

It works by computing
two homographies
(image warping), one
for each input image

reprojection " =

As a result, the new
epipolar lines are
horizontal and the
scanlines of the left and
right image are aligned
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Stereo Vision, disparity map

= The disparity map holds the disparity
value at every pixel:
= |dentify correspondent points of all . .
image pixels in the original images Right image
= Compute the disparity («d/— wlr) for each pair
of correspondences
= Usually visualized in gray-scale images

= Close objects experience bigger disparity;
thus, they appear brighter in disparity map

Disparity Map
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Stereo Vision, disparity map

The disparity map holds the disparity
value at every pixel:

= |dentify correspondent points of all
image pixels in the original images

= Compute the disparity (z//— wlr) for each pair
of correspondences

Usually visualized in gray-scale images

Close objects experience bigger disparity;
thus, they appear brighter in disparity map

From the disparity, we can compute the depth 7 as:

Ziw

ul _u’,
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Correspondence problem

= To average noise effects, use a window around the point of interest

= Neighborhood of corresponding points are similar in intensity patterns

=  Similarity measures:
= Zero-Normalized Cross-Correlation (ZNCC)
= Sum of Squared Differences (SSD),
= Sum of Squared Differences (SAD)
* Census Transform (Census descriptor plus Hamming distance)
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Effects of window size W

W =20
»  Smaller window « Larger window
+ More detalil + Smoother disparity maps

— More noise — Less detail
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1. Stereo camera calibration -> compute camera relative
pose

2. Epipolar rectification -> align images & epipolar lines
3. Search for correspondences
4. Output: compute stereo triangulation or disparity map

5. Consider how baseline & image resolution affect
accuracy of depth estimates

3D Object

Right Image

VN

Left Right
Center of projection Center of projection
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 Convolution for filter
k k

u=—kv=-—k% T
» Correlation for matching Notation for
convolution operator
k k
Gli,jl= > > Hlu,v]Fli+u,j+ 1] G=H®F
u=—kv=—=k

* We can use correlation for template matching to detect
locations similar to templates
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Derivative Theorem of Convolution in 1D

« Gaussiam smoothing + derivative " (%) =i((;a(x)*1(x))= G’ (x)*1(x)
It dx
filtering
= This saves us one operation:

Sigma = 50

...................................................

I(x) 5

| | | 1 | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

G, (x) =G, (*)

Kernel

1 1

L 1 | 1 L

1 1
] 200 400 600 800 1000 1200 1400 1600 1800 2000

Edges otcur dt max?ima/minima of s'(x)

§'(x) = G, (x)* 1 (x)

Convolution

L 1 1 | 1 i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Zero-crossings with Laplacian in 1D

« Gaussiam smoothing + Laplacian filtering in one

Sigma = 50

Signal

1(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

G! (x) = i— G, (x)

________________________________________________

Kernel

1 | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
T ! T ! T . T ! .

| Ediges ué:cur ajt zerué—crnssings of s"(x) ‘

§"(x) = G (x) * 1(x)

Convolution

1 | 1 | 1 | 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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2D Edge Detection

* Find gradient of smoothed image in both directions

oG, *1)] [oG

A
VS=V(G. D)=\ o6, +1)|7| 5.,
Ca Jla

= Discard pixels with [VS| (i.e. edge strength) below a certain threshold |VS|

= Non-maxima suppression: identify local maxima of
= detected edges
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VS =V(G, *1)

Thresholding |V S| Thinning: non-maximal suppression = edge image
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Point-feature extraction

 Harris corners
 SIFT features

« and more recent
algorithms from the
state of the art

« Application: visual
odometry

* Videos from the
Robotics and
Perception Group:
http://rpg.ifi.uzh.ch
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Corner Detection

o
=
v

=il
g
'

L

i i |

n an

3 e |t ormmn) Doy
& "

ll.i i‘i f“
I!Il 1

o)

apegey fege:

R 2R

Al por— 14

= mﬂ.-'.
=

v" e

sy

,, Aalto University
School of Electrical

Engineering 28



= Shifting a window in any direction should give a large change of intensity in at least 2 directions

7\
e
“flat” region: ‘edge”: “corner”:
no intensity change no change along the edge significant change in at
direction least 2 directions
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How do we implement Harris corner detector

Two image patches of size P one centered at (x, ) and one centered at (x+ Ax, y +Ay)

The Sum of Squared Differences between them is:

SSD(Ax, Ay) = D (1(x, )= I(x+ Ax, y + Ap))’

x,yvel

Let /7 = af(;’y ) and 7 = @ . Approximating with a 15t order Taylor expansion:
X ' ad

I(x+Ax,y+Ay)=I(x,y)+ 1 (x,y)Ax+ 1, (x,y)Ay

This produces the approximation

SSD(Ax, Av) ~ (1, (x, )Ax + 1, (x, )AV) ]

x,.yvel
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How do we implement Harris corner detector

SSD(Ax, Ay) = D (1,6, )Ax + 1, (x, 2)A) ]

x,vel

= This can be written in a matrix form as

I° I7T |[Ax
SSD(Ax,Ay) = >~ [Ax Ay]LJ} ;f} Ay}
X v v

— SSD(Ax,Ay) =~ > [Ax Ay]M[i;

172 I S Sna ] [Iﬂ
= l:fxfy If] [fofy 2.1 2 |1, ’

| |
x

2nd momen{ matrix Alternative ways to \Jrite this matrix
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How do we implement Harris corner detector

SSD(Ax, Ay) = D (1,6, )Ax + 1, (x, 2)A) ]

x,vel

= This can be written in a matrix form as

I° I7T |[Ax
SSD(Ax,Ay) = >~ [Ax Ay]LJ} ;f} Ay}
X v v

— SSD(Ax,Ay) =~ > [Ax Ay]M[i;

172 I S Sna ] [Iﬂ
= l:fxfy If] [fofy 2.1 2 |1, ’

| |
x

2nd momen{ matrix Alternative ways to \Jrite this matrix
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Harris corner detector, Interpretation of matrix M

0
= Since M is symmetric, it can always be decomposed into M =R" |:/:)J1 2, j|R

Ax
Ay
eigenvalues and the two axes’ orientations determined by R (i.e., the eigenvectors of M)

= We can visualize [Ax Ay]M[ } = const as an ellipse with axis lengths determined by the

= The two eigenvectors identify the two orthogonal directions of largest and smallest changes of SSC

direction of the largest
change of SSD

\ direction of the smallest
change of SSD
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What does this matrix M reveal?

= First, consider an axis-aligned corner:

wel & FE 2]

= This means dominant gradient directions align with x or y axis

Corner

= |f either A, or A, is close to 0, then this is not a corner:

vl X ]

S

Edge

Flat region
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Harris corner detector, Interpreting the eigenvalues

Classification of image points using eigenvalues of M

A corner can then be identified by checking whether the minimum of the two eigenvalues of M is
larger than a certain user-defined threshold

= R =min(x,2,) > threshold N
2
R is called “cornerness function”

The corner detector using this criterion is called
«Shi-Tomasi» detector

J. Shi and C. Tomasi (June 1994). "Good Features to Track,".
IEEE Conference on Computer Vision and Pattern Recognition

A, and X, are small; P
SSD is almost constant “Flat”
in all directions Flat

region A
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Harris corner detector: Workflow by ETH
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Harris corner detector: Workflow by ETH
= Compute corner response C

,, Aalto University
School of Electrical

Engineering




O
@
-
(7p]
()
-
-
et
N
O
.D.v.
(/p]
-
@)
Q.
(7p)
()
L -
-
)
-
L -
@)
o
()
(@)
-
©
L
oy e
=
[7p)
et
£
@
Q.
©
£
LL
|




Harris corner detector: Workflow by ETH

......

« Corner response C is invariant to Image rotation,.
* Probably the most widely used and known corner detector
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Blob Detection
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A blob is an image pattern that differs from its neighbors in
Intensity and texture (e.g., a circle, a star, an ellipse, or any
particular patch which is not a corner!)

« Has less localization accuracy than a corner (e.g., what's the
center of a blob?)

 It's more distinctive than a blob

The most popular blob detectors are

« LoG: Laplacian of Gaussian operator

* DoG: Difference of Gaussian

« SIFT (it uses DoG features)

« SUREF (it's an fast implementation of SIFT)
« CenSurk

- MSER
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CenSurE features
Approximates LoG/DoG by octagonal box filters

(Inner, outer) (1. 4) (2, 5) (3. 6) (4 8) (5 11) (6, 13) (7 l7)

M. Agrawal, K. Konolige, M. R. Blas. CenSurE: Center Surround Extremas
for Realtime Feature Detection and Matching ECCV 2008
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MSER blob detector

Looks for elliptical regions of uniform color

J. Matas, O. Chum, M. Urban, and T.
Pajdla. "Robust wide baseline stereo from
maximally stable extremal regions." British
Machine Vision Conference, 2002.

,, Aalto University
School of Electrical

Engineering 44



SIFT (Scale Invariant Feature Transform) is an approach for detecting and
describing regions of interest (blobs) in an image developed by D. Lowe (Univ. of
Bristish Columbia, Canada) in 2004 and today used in most vision applications
(Google image search, image retrieval, place recognition, and consumer cameras)

After 11 years since its invention, SIFT is still the best performing and most robust
feature descriptor; SURF, BRIEF, BRISK are suboptimal (way more efficient than
SIFT but not as robust to changes in view point)!

Things you should remember:
 SIFT detects DoG features

« SIFT is scale invariant: the same features can be re-detected from images
taken with significant distance from each other (i.e., re-scaled versions of the
image)

« SIFT is also invariant to orientation and changes of view-point (up to 60
degrees)

« SIFT introduces a “descriptor” based on gradient orientations, which is more
robust that just using pixel intensities
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SIFT features are reasonably invariant to changes in:
* Rotation

« Scaling

« Small changes in viewpoint,

* lllumination

Very powerful in capturing and describing distinctive features but also computationally
demanding

SIFT feature detector Demo:

for Matlab, Win, and Linux (freeware)
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vlfeat.org/~vedaldi/code/sift.html

Make your own panorama with AUTOSTITCH (freeware):
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Open-source code for FAST, BRIEF, BRISK and many more, available at the OpenCV library
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Place Recognition, Line Extraction
* Place recognition using Vocabulary Tree

* Line extraction from images

« Line extraction from laser data

Q: Is this Book present in the Scene?

Look for corresponding matches

Most of the Book’s keypoints are present in the Scene

= A: The Book is present in the Scene
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Taking this a step further... becomes
computationaly unfeasable

= Find an object in an image

= Find an object in multiple images

= Find multiple objects in multiple images

As the number of images increases, feature
based object recognition becomes
computationaly unfeasable
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Robot: Have | been to this place before?
 Building the Visual Vocabulary

Image Collection Extract Features Cluster Descriptors

Descriptors space

an
A

als
m

Examples |t
of

Visual

Words:
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Inverted File index

~~ Query Image Q

Query image Q

Visual

words in Q

101
102
105
105
180
180
180

..............................

Inverted File DB

l Visual word List of images that this word appears in

0

101
102

103
104

105

A!!
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Efficient Place/Object Recognition

= |[f we have millions of visual words, how do we efficiently associate
an image feature to the visual word it belongs to?

= |n principle, we would have to compare each feature with all visual words

= How can we do this efficiently?
= Build Vocabulary Tree via hierarchical clustering

[Nister and Stewenius, CVPR 2006]
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« k-means clustering is an algorithm to
partition n observations into k clusters
In which each observation xj belongs
to the cluster with center mi

* It minimizes the sum of squared
Euclidean distances between points xj
and their nearest cluster centers mi

Algorithm:
« Randomly initialize k cluster centers

* [terate until convergence:

— Assign each data point xj to the nearest
center mi

— Recompute each cluster center as the
mean of all points assigned to it

A,, Aalto University
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K-means clustering - Demo

. o
-.."‘ »!
- " »
» -
e L - » " %
» : - I-.
»
‘.'l - oy
- ® - 'n - »
»
. P . e 7
»
- b » hd
- - = *
-
- -
- "l'
-.'.
»
e »"e
»
» - I'
» -
» - *

Source: http://shabal.in/visuals/kmeans/1.html
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http://shabal.in/visuals/kmeans/1.html

Recognition with K-tree — Populate the
descriptor space
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Recognition with K-tree — Populate the
descriptor space
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Recognition with K-tree — Populate the
descriptor space
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By Klustering
Building the inverted file index
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Querying an Image
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FABMAP [Cummins and Newman [JRR 2011]

Place recognition for robot
localization

Use training images to build the
visual vocabulary

At a new frame, compute:
— P(being at a known place)
— P(being at a new place)

Captures the dependencies of
words to distinguish the most
characteristic structure of each
scene (using the Chow-Liu ~
tree) 3
Binaries available online: RS FEEEn———
http://www.robots.ox.ac.uk/~mj

c/Software.htm
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FABMAP example

r

* p = probability of images coming from the same place

,, Aalto University
School of Electrical

Engineering 60



FABMAP example

robots.ox.ac. ukl~mjclappearance based_results.htm

(a) p=0.9989

* p = probability of images coming from the same place
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* Visual Vocabulary holds appearance information but
discards the spatial relationships between features

« Two images with the same features shuffled around Iin
the image will be a 100% match when using only
appearance information.

« If different arrangements of the same features are
expected then one might use geometric verification

— Test the k most similar images to the query image for geometric
consistency (e.g. using RANSAC)

— Further reading (out of the scope of this course):
— [Cummins and Newman, IJRR 2011]
— [Stewenius et al, ECCV 2012]
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Line extraction from images

Suppose that you have been commissioned to implement
a lane detection for a car driving-assistance system. How

would you proceed?

Classical reference; Ernst D Dicksmanns: Dynamic vision
for control of motion, Springer
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How do we extract lines from edges? Two popular line extraction
algorithms:

1. Hough transform (used also to detect circles, ellipses, and any sort
of shape)

2. RANSAC (Random Sample Consensus)

,, Aalto University
School of Electrical

Engineering 64



How do we extract lines from edges? Two popular line extraction
algorithms:

* Finds lines from a binary edge image using a voting procedure
* The voting space (or accumulator) is called Hough space

Image space Hough parameter space

yt bt
* (x1,¥1) b=—x,m+7y,

— —
(xﬂ’ }’[]) Every point votes b = —XoMm + Yo
Yo a line in the Hough
. space .
Xg X m

« [Each point in image space, votes for line-parameters in Hough
parameter space

A,, Aalto University
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Problems with the (m, b) space:

Unbounded parameter domain . P =xcosf+ ysind
 m, b can assume any value in [—, \‘““x

+°O] P | \H‘H\\\
Alternative line representation: polar Y

representation ~

8 =180

p=10 p =100
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Hough transform

1. Initialize: set all accumulator cells to zero H: accumulator array (votes)

2. for each edge point (x,y) in the image

for allB8in [0 : step : 180]

Compute p = xcosf + ysinf 0
H(®,p) = H(O,p) + 1

end

end

3. Find the values of (@, p) where H(8, p) is a local maximum

4. The detected line in the image is given by: p = xcosf@ + ysinf
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Hough Transform

Notice, however, that the Hough only find the parameters of the line, not
the ends of it.

Hough is suitable for extracting other geometric forms having finite number
of parameters, circles etc.
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* RANSAC has become the standard method for model fitting
In the presence of outliers (very noisy points or wrong data)

It can be applied to line fitting but also to thousands of
different problems where the goal is to estimate the
parameters of a model from noisy data (e.g., camera
calibration, structure from motion, DLT, homography, etc.)

« Let’'s now focus on line extraction

M. A.Fischler and R. C.Bolles. Random sample consensus: A
paradigm for model fitting with applicatlons to image analysis
and automated cartography. Graphics and Image Processing,
24(6):381-395, 1981.
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* Select sample of 2 points at
random

» Calculate model parameters
that fit the data in the sample

» Calculate error function for each
data point

 Select data that supports
current hypothesis

A!
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» Select sample of 2 points at
random

* Calculate model parameters
that fit the data in the sample

» Calculate error function for each
data point

* Select data that supports
current hypothesis

* Repeat sampling



» Select sample of 2 points at
random

» Calculate model parameters
that fit the data in the sample

» Calculate error function for each
data point

» Select data that supports
current hypothesis

* Repeat sampling
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= W e £ - Set with the maximum number of inliers

obtained after K iterations
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How many iterations does RANSAC need?

 ldeally: check all possible combinations of 2 points in a
dataset of N points.

* Number of all pairwise combinations: N(N-1)/2

=> computationally unfeasible if N is too large.

example: 10’000 edge points => need to check all 10'000*9999/2= 50
million combinations!

Do we really need to check all combinations or can we stop

after some iterations?

— Checking a subset of combinations is enough if we have a rough
estimate of the percentage of inliers in our dataset

e This can be done in a probabilistic way

A,, Aalto University



Let A be a set of N points

1. repeat

2. Randomly select a sample of 2 points from A

3. Fit a line through the 2 points

4, Compute the distances of all other points to this line

5. Construct the inlier set (i.e. count the number of points whose

distance < d)
0. Store these inliers
7. until maximum number of iterations k reached

8. The set with the maximum number of inliers is chosen as a solution to
the problem

RANSAC is really robust in eliminating outlayers.

Typical applications in robotics are: line extraction from 2D range data, plane
extraction from 3D data, feature matching, structure from motion, camera
calibration, homography estimation, etc.

A,, Aalto University



Algorithm 1: Split-and-Merge (standard)

« Popular algorithm, originates from Computer Vision.
* Arecursive procedure of fitting and splitting.

« Aslightly different version, called Iterative end-point-fit, simply connects the end
points for line fitting.

Let S be the set of all data points
Split
» Fitaline to points in current set S

* Find the most distant point to the line
« If distance > threshold => split set & repeat with
left and right point sets
Merge
» If two consecutive segments are collinear enough, obtain

the common line and find the most distant point
« If distance <= threshold, merge both segments
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Algorithm 1: Split-and-Merge (iterative end-
point-fit)

Iterative end-point-fit: simply connects the end points for line fitting
o000 ..
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Algorithm 2: Line-Regression

« “Sliding window” of size Nf points
 Fit line-segment to all points in each window

Line-Regression

» Initialize sliding window size N,

- Fit a line to every N, consecutive points (i.e. in each
window)

« Merge overlapping line segments + recompute line
parameters for each segment
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Algorithm 2: Line-Regression

« “Sliding window” of size Nf points
 Fit line-segment to all points in each window

Line-Regression Nf =3
» Initialize sliding window size N,

- Fit a line to every N, consecutive points (i.e. in each
window)

» Merge overlapping line segments + recompute line
parameters for each segment
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