
Visual localization and object
recognition

Arto Visala

2.4.2019

Sensors and machine perception are the key

components for modelling the environment

2

Perception for Mobile Robots

3

Perspective camera model

4

Perspective projection in camera model

5

Perspective projection, from scene points to

pixels

6

Perspective projection, from scene points to

pixels

7

• Expressed in matrix form and

homogeneous coordinates:

Perspective projection, from scene points to

pixels

8

Camera Calibration

9

Stereo Vision versus Structure from Motion

10

Stereo vision:

is the process of obtaining depth information from a pair of

images coming from two cameras that look at the same

scene from different but known positions

Structure from motion, Motion vision:

is the process of obtaining depth and motion information

from a pair (sequence) of images coming from the same

camera that looks at the same scene from different

positions

Depth from Stereo

11

• From a single camera, we can only deduct the ray on which each

image point lies

• With a stereo camera (binocular), we can solve for the intersection

of the rays and recover the 3D structure

Stereo Vision, simplified case

12

Disparity in inversely proportial to distance

Stereo Vision, general case

13

Stereo Vision, Correspondence

14

Stereo Vision, search in 1D with the epipolar

constraint

15

Stereo Vision, Stereo Rectification

16

• Reprojects image
planes onto a common
plane parallel to the
baseline

• It works by computing
two homographies
(image warping), one
for each input image
reprojection

• As a result, the new
epipolar lines are
horizontal and the
scanlines of the left and
right image are aligned

Stereo Vision, disparity map

17

Stereo Vision, disparity map

18

Correspondence problem

19

Effects of window size W

20

Stereo Vision, summary
1. Stereo camera calibration -> compute camera relative

pose

2. Epipolar rectification -> align images & epipolar lines

3. Search for correspondences

4. Output: compute stereo triangulation or disparity map

5. Consider how baseline & image resolution affect

accuracy of depth estimates

21

Filtering, Edges, and Point-features

• Convolution for filter

• Correlation for matching

• We can use correlation for template matching to detect
locations similar to templates

22

Derivative Theorem of Convolution in 1D

• Gaussiam smoothing + derivative

filtering

23

Zero-crossings with Laplacian in 1D
• Gaussiam smoothing + Laplacian filtering in one

operation

24

2D Edge Detection

25

2D Edge Detection with Canny edge detector

26

Point-feature extraction

• Harris corners

• SIFT features

• and more recent
algorithms from the
state of the art

• Application: visual
odometry

• Videos from the
Robotics and
Perception Group:
http://rpg.ifi.uzh.ch

27

Corner Detection

28

Corner Detection

29

How do we implement Harris corner detector

30

How do we implement Harris corner detector

31

How do we implement Harris corner detector

32

Harris corner detector, Interpretation of matrix M

33

Harris corner detector, Interpretation of matrix M

What does this matrix M reveal?

34

Harris corner detector, Visualization of 2nd moment

matrices

35

Harris corner detector, Interpreting the eigenvalues

36

Harris corner detector: Workflow by ETH

37

Harris corner detector: Workflow by ETH

38

Harris corner detector: Workflow by ETH

39

Harris corner detector: Workflow by ETH

40

• Corner response C is invariant to image rotation,.

• Probably the most widely used and known corner detector

Blob Detection

41

Blob features
A blob is an image pattern that differs from its neighbors in
intensity and texture (e.g., a circle, a star, an ellipse, or any
particular patch which is not a corner!)

• Has less localization accuracy than a corner (e.g., what’s the
center of a blob?)

• It’s more distinctive than a blob

The most popular blob detectors are

• LoG: Laplacian of Gaussian operator

• DoG: Difference of Gaussian

• SIFT (it uses DoG features)

• SURF (it’s an fast implementation of SIFT)

• CenSurE

• MSER

42

CenSurE features

Approximates LoG/DoG by octagonal box filters

43

MSER blob detector

Looks for elliptical regions of uniform color

44

SIFT features
SIFT (Scale Invariant Feature Transform) is an approach for detecting and
describing regions of interest (blobs) in an image developed by D. Lowe (Univ. of
Bristish Columbia, Canada) in 2004 and today used in most vision applications
(Google image search, image retrieval, place recognition, and consumer cameras)

After 11 years since its invention, SIFT is still the best performing and most robust
feature descriptor; SURF, BRIEF, BRISK are suboptimal (way more efficient than
SIFT but not as robust to changes in view point)!

Things you should remember:

• SIFT detects DoG features

• SIFT is scale invariant: the same features can be re-detected from images
taken with significant distance from each other (i.e., re-scaled versions of the
image)

• SIFT is also invariant to orientation and changes of view-point (up to 60
degrees)

• SIFT introduces a “descriptor” based on gradient orientations, which is more
robust that just using pixel intensities

45

SIFT features summary
SIFT features are reasonably invariant to changes in:

• Rotation

• Scaling

• Small changes in viewpoint,

• Illumination

Very powerful in capturing and describing distinctive features but also computationally
demanding

SIFT feature detector Demo:

for Matlab, Win, and Linux (freeware)

http://www.cs.ubc.ca/~lowe/keypoints/

http://www.vlfeat.org/~vedaldi/code/sift.html

Make your own panorama with AUTOSTITCH (freeware):

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Open-source code for FAST, BRIEF, BRISK and many more, available at the OpenCV library

46

Place Recognition, Line Extraction
• Place recognition using Vocabulary Tree

• Line extraction from images

• Line extraction from laser data

47

Taking this a step further… becomes

computationaly unfeasable

48

Robot: Have I been to this place before?

• Building the Visual Vocabulary

49

Inverted File index

50

Efficient Place/Object Recognition

51

K-means clustering - Review

• k-means clustering is an algorithm to
partition 𝑛 observations into 𝑘 clusters
in which each observation 𝒙𝑗 belongs
to the cluster with center 𝒎𝑖

• It minimizes the sum of squared
Euclidean distances between points 𝒙𝑗
and their nearest cluster centers 𝒎𝑖

Algorithm:

• Randomly initialize 𝑘 cluster centers

• Iterate until convergence:
– Assign each data point 𝒙𝑗 to the nearest

center 𝒎𝑖

– Recompute each cluster center as the
mean of all points assigned to it

52

K-means clustering - Demo

Source: http://shabal.in/visuals/kmeans/1.html

53

http://shabal.in/visuals/kmeans/1.html

Recognition with K-tree – Populate the

descriptor space

54

Recognition with K-tree – Populate the

descriptor space

55

Recognition with K-tree – Populate the

descriptor space

56

By Klustering

57

58

FABMAP [Cummins and Newman IJRR 2011]

• Place recognition for robot
localization

• Use training images to build the
visual vocabulary

• At a new frame, compute:
– P(being at a known place)

– P(being at a new place)

• Captures the dependencies of
words to distinguish the most
characteristic structure of each
scene (using the Chow-Liu
tree)

• Binaries available online:
http://www.robots.ox.ac.uk/~mj
c/Software.htm

59

FABMAP example

• p = probability of images coming from the same place

60

FABMAP example

• p = probability of images coming from the same place

61

Robust object/scene recognition

• Visual Vocabulary holds appearance information but

discards the spatial relationships between features

• Two images with the same features shuffled around in

the image will be a 100% match when using only

appearance information.

• If different arrangements of the same features are

expected then one might use geometric verification

– Test the k most similar images to the query image for geometric

consistency (e.g. using RANSAC)

– Further reading (out of the scope of this course):

– [Cummins and Newman, IJRR 2011]

– [Stewenius et al, ECCV 2012]

62

Line extraction from images

Suppose that you have been commissioned to implement

a lane detection for a car driving-assistance system. How

would you proceed?

Classical reference; Ernst D Dicksmanns: Dynamic vision

for control of motion, Springer

63

Line extraction
How do we extract lines from edges? Two popular line extraction

algorithms:

1. Hough transform (used also to detect circles, ellipses, and any sort

of shape)

2. RANSAC (Random Sample Consensus)

64

Hough transform
How do we extract lines from edges? Two popular line extraction

algorithms:

• Finds lines from a binary edge image using a voting procedure

• The voting space (or accumulator) is called Hough space

• Each point in image space, votes for line-parameters in Hough

parameter space

65

Hough transform

Problems with the (𝑚, 𝑏) space:

Unbounded parameter domain

• 𝑚, 𝑏 can assume any value in [−∞,

+∞]

Alternative line representation: polar

representation

66

Hough transform

67

Hough transform, examples

68

Notice, however, that the Hough only find the parameters of the line, not

the ends of it.

Hough is suitable for extracting other geometric forms having finite number

of parameters, circles etc.

RANSAC (RAndom SAmple Consensus)

• RANSAC has become the standard method for model fitting

in the presence of outliers (very noisy points or wrong data)

• It can be applied to line fitting but also to thousands of

different problems where the goal is to estimate the

parameters of a model from noisy data (e.g., camera

calibration, structure from motion, DLT, homography, etc.)

• Let’s now focus on line extraction

M. A.Fischler and R. C.Bolles. Random sample consensus: A

paradigm for model fitting with applicatlons to image analysis

and automated cartography. Graphics and Image Processing,

24(6):381–395, 1981.

69

RANSAC

70

RANSAC

71

RANSAC

72

RANSAC

73

RANSAC

74

RANSAC

How many iterations does RANSAC need?

• Ideally: check all possible combinations of 2 points in a

dataset of N points.

• Number of all pairwise combinations: N(N-1)/2

=> computationally unfeasible if N is too large.

example: 10’000 edge points => need to check all 10’000*9999/2= 50

million combinations!

• Do we really need to check all combinations or can we stop

after some iterations?

– Checking a subset of combinations is enough if we have a rough

estimate of the percentage of inliers in our dataset

• This can be done in a probabilistic way

75

RANSAC- Algorithm
Let A be a set of N points

1. repeat

2. Randomly select a sample of 2 points from A

3. Fit a line through the 2 points

4. Compute the distances of all other points to this line

5. Construct the inlier set (i.e. count the number of points whose
distance < d)

6. Store these inliers

7. until maximum number of iterations k reached

8. The set with the maximum number of inliers is chosen as a solution to
the problem

RANSAC is really robust in eliminating outlayers.

Typical applications in robotics are: line extraction from 2D range data, plane
extraction from 3D data, feature matching, structure from motion, camera
calibration, homography estimation, etc.

76

Algorithm 1: Split-and-Merge (standard)

• Popular algorithm, originates from Computer Vision.

• A recursive procedure of fitting and splitting.

• A slightly different version, called Iterative end-point-fit, simply connects the end

points for line fitting.

Let S be the set of all data points

Split

• Fit a line to points in current set S

• Find the most distant point to the line

• If distance > threshold => split set & repeat with

left and right point sets

Merge

• If two consecutive segments are collinear enough, obtain

the common line and find the most distant point

• If distance <= threshold, merge both segments

77

Algorithm 1: Split-and-Merge (iterative end-

point-fit)
• Iterative end-point-fit: simply connects the end points for line fitting

78

Algorithm 2: Line-Regression

• “Sliding window” of size Nf points

• Fit line-segment to all points in each window

79

Algorithm 2: Line-Regression

• “Sliding window” of size Nf points

• Fit line-segment to all points in each window

80

