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This article presents a new kind of navigation system for agricultural machines. The focus is on trajectory
control where a Nonlinear Model Predictive path tracking for tractor and trailer system is presented. The
experiments of the proposed method are carried out by using real agricultural machines in real environ-
ments.

The agricultural objective is to drive so that swaths are exactly side-by-side, without overlapping or
gaps. Hence, the objective of this research was to control the lateral position of the towed implement
and to keep it close to the adjacent driving line. The adjacent driving line was recognized locally by using
a 2D laser scanner. The local measurement and global position information was merged with the help of
an Extended Kalman Filter (EKF). The measurement of the heading by GPS was improved by using an
inertial measurement unit and a separate EKF filter. The position of the implement was controlled by
steering the tractor and by the use of a hydraulically controlled joint. Because there were two actuators
which affected the position of the implement, the problem was a multivariable control problem. Nonlin-
ear Model Predictive Control (NMPC) was used to accomplish the navigation task.

The goal was to build a system, which is able to have at least the same accuracy as a human driver. The
sufficient accuracy requirement was at most 10 cm lateral error at a speed of 12 km/h. The results pre-
sented in the article show that the goal was met and NMPC is a feasible method for accurate path track-
ing. Further investigation is, however, needed to adapt the method to other kinds of agricultural
machines.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In a recent survey, different existing path tracking methods
were extensively compared (Snider, 2009). The path tracking
methods were classified into three groups: the geometric ap-
proach, the kinematic control laws and the optimal control. Model
Predictive Control (MPC) and its extension, Nonlinear Model Pre-
dictive Control (NMPC), were seen as the next logical evolutionary
step in that survey.

The goal of the autonomous navigation or guidance in agricul-
ture is to control the trajectory of the vehicle, to keep it within a
constant distance to the adjacent driving line, or as in agricultural
terms, to lay swaths side by side. Although the tractor and imple-
ment could be located differently, most commercial guidance sys-
tems concentrate on keeping the tractor at a constant distance
from the adjacent driving line. Actually, the objective should rather
be to keep the operational point in the implement, like coulters in a
seed drill or nozzles in the sprayer, at the constant distance from
ll rights reserved.
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the adjacent driving line. Especially in curves, a trailer does not fol-
low the same track as the tractor does and the tractor alone for
navigation will result in gaps and overlaps.

In order to be useful, the autonomous navigation system must
be able to drive as fast as human driver and be at least as accurate
as a human. Most of the autonomous systems drive at much slower
speeds than traditional agricultural working machines or achieve
less accuracy when operated at higher speeds. In this research
the goal was to build a tractor–trailer navigation system which is
able to drive at a speed of at least 12 km/h with less than 10 cm lat-
eral error. This speed is sufficient for most agricultural operations
that require high precision. A real-time solution was also required
in order to experimentally evaluate the system under real field
conditions.

The remaining part of this article is organized in following way.
Firstly is presented, a brief review of studies on path tracking using
MPC and NMPC methods, and studies about path tracking with
tractor–trailer systems. Secondly, the configurations for tests, the
derivation of the kinematic model of the tractor–trailer system
and the dynamic model of the actuators used in this study are
explained. After that, the NMPC method and the required state
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estimations are described. Finally, the experimental results of the
navigation system are reported and some conclusions are
highlighted.

1.1. Studies of Model Predictive Controller and path tracking

Nonlinear Model Predictive Controllers are normally used in
industrial plants and in process control to optimize the operation
points of the controlled process. It is easier to implement NMPC
in these environments due to longer time constants. If the time
constants of the system are smaller as in vehicle trajectory control,
the controller must run with a higher control cycle. This demands
high computing capacity for real time control. However, in the last
10 years or so, the development in computational capacity of desk-
top processors and also the development in numerical methods to
solve the optimization problems have made it possible to use the
NMPC in real-time solutions for mobile robots. Research conducted
on the usage of the MPC for the path or trajectory tracking pur-
poses is sparse and those available mostly deal with the computa-
tional requirements.

One way to lighten the computational requirements is to com-
bine MPC and another control law that actually do the steering of
the vehicle. The purpose of MPC is to improve the performance of
the complementing control law. Kim et al. (2001) used MPC for
avoiding wheel-ground slippage and loss of wheel-ground contact.
The method was proven to work in experiments with a three-
wheeled vehicle on an inclined surface. Another research where
MPC was used to improve the performance of another control tech-
nique was carried out by Lenain et al. (2005). In the research, MPC
was used in the real-time control of the steering angle of the trac-
tor. The desired steering angle was calculated by a nonlinear con-
trol law from the followed path. The MPC was used to reduce the
‘‘delay phenomenon’’ of the actual steering system.

In the development of automotive safety systems, Keviczky
et al. (2006) used NMPC to stabilize the vehicle along a desired
path while reducing the effect of wind gusts. The commercial
NPSOL software package was used in the tests. The vehicle speed
was varied from 5 to 17 m/s. It was found that when the driving
speed was increased, the corresponding control and prediction
horizons must be increased dramatically in order to achieve stable
performance. This increase then leads to problems in computa-
tional complexity. To reduce the computational complexity, a sub-
optimal MPC controller based on successive online linearization of
the nonlinear vehicle model (LTV MPC) was later presented in Fal-
cone et al. (2007). The resulting optimization problem was recast
to a quadratic program (QP) and solved with Model Predictive Con-
trol Toolbox for Matlab available from The MathWorks Incorpo-
rated. It was found that the LTV MPC was able to stabilize the
vehicle, even at high speeds, although the control horizon was re-
duced to one.

Kühne et al. (2005a) presented nonlinear MPC and linear MPC
methods used to solve path tracking problem on a nonholonomic
wheeled mobile robot. In their research, the computational effort
required to solve the optimization problems was studied and the
performance of both controllers were compared. They found out
that at the time of their research that, the Nonlinear Model Predic-
tive Controller was computationally too demanding to be solved in
real-time with a prediction horizon larger than 5 and also that the
linear MPC had a good performance with lower computational ef-
fort. But they also noted that the linear model is only valid near the
reference trajectory. Furthermore, Kühne et al. (2005b) proposed
an alternative way to formulate a cost function. The modified cost
function was calculated in polar coordinates and the weight of the
state cost increased among the prediction horizon. With this mod-
ified cost function, the computational effort was reduced and a bet-
ter steady state performance was achieved.
Vougioukas (2007) used nonlinear MPC (NMPC) to control the
steering angle and the speed of their vehicle. The criterion was
the difference between the desired path and the predicted path.
Although experiments were done completely in a simulator, good
results were achieved and the advantage of this approach was
shown.

Klančar and Škrjanc (2007) proposed a tracking-error model-based
predictive control law for tackling the trajectory tracking problem for a
nonholonomic wheeled mobile robot. The prerequisite was that the
reference path should be a smooth twice-differentiable function of
time. The control law was based on a linearized error dynamics model
obtained around the reference trajectory. The resulting control law was
analytically derived and therefore computationally light.

It is well know that the MPC is not guaranteed to be stable due
to the finite prediction horizon. Gu and Hu (2006) developed a
method to calculate the terminal state region and a corresponding
controller for ensuring the stability of the controller. However, the
proposed controller needed a feasible initial solution. Also the
computational efficiency was noted to be a problem and worthy
of further investigation.

1.2. Studies of path tracking with tractor–trailer system

All the approaches mentioned before are purposed for robot-
only navigation. In the literature there are, however, numerous
proposals for control laws for tractor–trailer systems. Most of the
studies concern reverse motion with a trailer, because forward mo-
tion is seen to be naturally exponentially stable. According to Car-
iou et al. (2010) and Siew et al. (2009) these control laws are not
well-adopted for an agricultural context due to delays and nonlin-
earities in actuators and sliding conditions of varying soils. Cariou
et al. (2010) studied headland manoeuvres with a trailer. Model
Predictive Control was used to anticipate speed variations and re-
ject significant overshoots in longitudinal motion in the same man-
ner as in Lenain et al. (2005). However, the trailer was again
ignored in forward motion and, in backward motion, the objective
is to maintain a constant joint angle between the tractor and
trailer.

Siew et al. (2009) modelled the behaviour of a tractor-imple-
ment-trailer (tractor with two trailers and the first trailer was con-
trolled by steering its wheels) system with sliding conditions. The
controller for the trailer was not constructed. However, the
impractical assumption of slippage free motion was shown in this
study. Also, Karkee and Steward (2010) studied the characteristics
of a tractor and a single axle towed implement system. In the pa-
per, three different models for a tractor–trailer system were de-
rived: kinematic model, dynamic model and high-fidelity model.
In the last model, the tire relaxation length was included into the
dynamic model. The experiments showed that the kinematic mod-
el described the behaviour sufficiently well when the driving speed
was less than 4.5 m/s and input frequency less than 1 rad/s. A high-
fidelity model was needed when the driving speed was increased.
In the paper, the closed loop behaviour with the Linear Quadratic
Regulator (LQR) was also studied. The controller was used to stabi-
lize the tractor and implement heading errors as well as the tractor
lateral error. The controller was unstable at 4.5 m/s forward veloc-
ity when the kinematic model was used. With the high-fidelity
model the controller was stable for a range of 0.5–10.0 m/s forward
velocities. However, it was noticed that the linearization of the
model does not hold when the steering or heading angle was above
10 deg. The LQR control has been used also in other tractor–trailer
experiments (e.g. Bevly, 2001; Bell, 1999).

There are even commercial solutions for tractor–trailer naviga-
tion, for example John Deere’s iGuide and iSteer (Deere, 2009a,b).
The difference between these systems is that iGuide is based on
passive implement control (the implement does not have any



34 J. Backman et al. / Computers and Electronics in Agriculture 82 (2012) 32–43
steering mechanism) and iSteer is based on active implement con-
trol (the implement has its own steering system). However, it
seems that both of these systems are add-ons for basic tractor-only
guidance system. In iGuide, the roll angle of the machine is moni-
tored and slipping due to the slope is compensated by setting an
offset from the path in the tractor navigation. The offset value is di-
rectly proportional to the roll angle. In iSteer, both, the tractor and
the trailer, are kept on the desired path. The trailer has its own
positioning and steering systems. In this manner, the tractor–trai-
ler system has two separate navigation systems that have a com-
mon user interface. It seems that both of these systems are
intended to be used mainly on straight driving lines.

Other manufactures have similar products also. An example is
the Trimble TrueGuide system. However, it seems that all these
products use either two separate controllers (tractor and imple-
ment have their own) or an implement error is used directly as
an offset value for tractor-guidance. A drawback of these solutions
is that the trailer navigation does not take into account the devia-
tions from the desired path caused by the tractor navigation and
vice versa. This control problem is truly a multivariate nonlinear
control problem and more advanced control systems can be used
to improve the accuracy of the navigation system.
2. The test configuration

In this article, the test configuration consisted of a standard
tractor and a towed trailer type implement. The tractor and the
trailer were equipped for the navigation tests with position mea-
surement and control devices. A mathematical model, described
in Section 2.2, is needed both for estimation and control of the
tractor–trailer system. The NMPC uses the mathematical model
to predict or estimate the future in the optimization process. The
Extended Kalman Filter (EKF) uses the same model to estimate
the current state of the controlled system.

2.1. Equipments

The test configuration was the same as reported in (Backman
et al., 2009). The tractor was a Valtra T190, with added ISO 11783
Class 3 functionalities. The trailer was a Junkkari Maestro 3000 seed
drill equipped with an ISO 11783 implement controller. The draw-
bar of the seed drill was modified by adding an extra controllable
angle joint, which gave an extra degree of freedom for guidance
of the vehicle. The test configuration for the tractor and towed trai-
ler, i.e. the vehicle, is presented in Fig. 1.

The tractor and towed trailer had two sensor systems for mea-
suring the distance to the adjacent driving line: a global GPS-based
on the tractor and a local laser scanner-based located on the imple-
ment-side. In this research, a Timble 5700 VRS-GPS together with a
Xsens Technologies MT9-B inertial measurement unit (IMU) were
Fig. 1. The test configuration consisted of
used for global localisation and a Sick LMS221 2D laser scanner
was used for local localisation. The Sick LMS221 pointing down-
wards, scans a 180 deg area with 1 deg resolution 77 times per sec-
ond. The seed drill had a small marking plough mounted on the
trailing harrow at the rear right corner of the seed drill. The mark-
ing plough produced a small furrow, which was identified from the
field profile measurement by the laser scanner. The local measure-
ment and the global position information were merged with the
help of the Extended Kalman Filter and a kinematic model.

The tractor with ISO 11783 Class 3 functionality made it possible
to control the speed and the steering angle of the tractor through the
Controller Area Network bus (CAN-bus). The guidance computer
was assembled from standard components of a desktop computer.
The components; an Intel DG45FC Mini-ITX Motherboard, Intel Core
2 Duo E8600 processor and 2GB memory were installed in a self-
made rugged pc case. The navigation computer was connected to
an ISO 11783 CAN-bus through which commands and most mea-
surements were transferred. The transfer rate of the messages was
limited to 100 ms due to the requirements of the ISO 11783 standard,
and the capabilities of the VRS-GPS and the hydraulic valves.
2.2. Model of the tractor–trailer system

The tractor–trailer system could be modelled with a dynamic
model, in which every force that affects the system is considered.
Such a model would describe the reality perfectly. However, tuning
this kind of model would be difficult and taking care of all the cir-
cumstances and the forces is impossible as it would also require
modelling of the environment. For example slipping depends on soil
moisture and tyre properties, slope at the current position, whether
the implement is engaged with the soil or not, and amount of addi-
tional weights installed on. Furthermore, by using this kind of model
with the NMPC would lead to difficulties with computational capac-
ity. For these reasons, some simplifying assumptions were made in
the development of the model.

In derivation of the kinematic model, it is assumed that the
ground is ideal and slipping affects only the front steering wheels
sideways. By these assumptions the kinematic model of the tractor
is similar to the well-known bicycle model. The difference is an
added slipping factor. The kinematic model of the tractor is given
in Eq. (1).

_xR

_yR

_h
_d

2
6664

3
7775 ¼

v t cos h

v t sin h

v t
tan dat

a

0

2
6664

3
7775; ð1Þ

where (xR, yR) is the centre position of the rear axle, h is the heading
angle, d is the slipping factor, at is the realized steering angle, vt is
the realized vehicle speed and a is the wheelbase.
a standard tractor and towed trailer.
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In literature (e.g. Wong, 2008, pp. 30–39), the tyre slipping is
usually modelled by introducing a slip angle which is added to
the steer angle; a = at + aslip, where a is the effective steering angle.
Then the slip angle aslip will constantly change especially in curves.
If there are no external forces pulling or pushing the tractor side-
ways, it can be assumed that the slipping is caused by inertia
and the slipping angle is approximately relative to the steering an-
gle. By introducing the slipping factor, the slip angle can be rela-
tively calculated from the steer angle; aslip = (d � 1)at, if the
steering angle is not equal to zero. If the conditions remain the
same, the slipping factor is somewhat constant despite the changes
in the steering angle.

Because both, the EKF and the NMPC, work in discrete time, Eq.
(1) is discretized with Euler’s approximation:

xRðtkþ1Þ
yRðtkþ1Þ
hðtkþ1Þ
dðtkþ1Þ

2
6664

3
7775 ¼

xRðtkÞ þ v tðtkÞ cos hðtkÞT
yRðtkÞ þ v tðtkÞ sin hðtkÞT
hðtkÞ þ v tðtkÞ tan dðtkÞatðtkÞ

a T

dðtkÞ

2
6664

3
7775; ð2Þ

where the sampling period is constant; tk+1 � tk = T. In this research
T = 100 ms sampling period was used due to limits of the communi-
cation network.

The behaviours of the tractor actuators were modelled as first
order dynamic models. It is assumed that the actuators were able
to realize the desired control values eventually and no steady state
errors were present. The realized control values or the states where
the actuators are currently located are modelled according to Eq.
(3) as:

v tðtkþ1Þ
atðtkþ1Þ

� �
¼

kvv tðtkÞ þ ð1� kvÞvdðtkÞ
kaatðtkÞ þ ð1� kaÞadðtkÞ

� �
; ð3Þ

where kv and ka are the dynamic coefficient parameters vd and ad

and are the desired control values, which are fed to the actuators,
the desired speed and steering angle, respectively.

If it is assumed that the trailer does not slide sideways, the kine-
matic behaviour of the trailer can be modelled with only the angle
between the trailer and the tractor. The differential equation of the
freely moving joint angle is given in Eq. (4) (derived in Backman
et al., 2009).

_b ¼ �av t sinðbþ ctÞ þ v tðdþ c cos ct þ b cosðbþ ctÞÞ tan at � ad _ct

aðdþ c cos ctÞ
;

ð4Þ

where b is the angle between the tractor and the trailer, ct is the
realized angle of the controlled joint, d is the distance to the seed
coulters from the drawbar, c is the length of the drawbar and b is
the distance to the attachment point from the rear axle. The differ-
ential equation is again discretized with Euler’s approximation:

bðtkþ1Þ ¼ bðtkÞ þ _bðtkÞT: ð5Þ

The realized control value is modelled with first order dynamic
model:

ctðtkþ1Þ ¼ kcctðtkÞ þ ð1� kcÞcdðtkÞ; ð6Þ

where kc is the filter coefficient and cd is the desired joint angle.
There are also auxiliary states for the optimization and the esti-

mation process. The centre position of the trailer is needed for the
cost function in the NMPC. The trailer position is modelled with Eq.
(7):

xE

yE

� �
¼

xR � b cos h� c cosðb� hÞ � d cosðbþ cactual � hÞ
yR � b sin hþ c sinðb� hÞ þ d sinðbþ cactual � hÞ

� �
; ð7Þ

where (xE, yE) is the centre position of the trailer and d is the
distance from the drawbar.
The location of the laser scanner and the marking plough are
needed for the local correction of the position of the vehicle with
the laser scanner measurement. The position of the laser scanner
is calculated as:

xL

yL

� �
¼

xE þ lx cosðbþ cactual � hÞ � ly sinðbþ cactual � hÞ
yE � lx sinðbþ cactual � hÞ � ly cosðbþ cactual � hÞ

� �
; ð8Þ

where (xL, yL) is the position of the laser scanner lx and is the
axial and ly the cross-axial distance from the centre position of
the trailer. The position of the marking plough is calculated in Eq.
(9) as:

xP

yP

� �
¼

xE þ px cosðbþ cactual � hÞ � py sinðbþ cactual � hÞ
yE � px sinðbþ cactual � hÞ � py cosðbþ cactual � hÞ

" #
; ð9Þ

where (xP, yP) is the position of the marking plough and px is the ax-
ial and py the cross-axial distance from the centre position of the
trailer.

The resulting state vector of the overall kinematic model is:

x ¼ ½ xr yR h d v t at b ct
_ct xE yE �

T
; ð10Þ

and the overall resulting control vector is:

u ¼ ½ vd ad ld �
T
: ð11Þ

Subsequently, the system model is given as:

xðtkþ1Þ ¼ f ðxðtkÞ;uðtkÞÞ; ð12Þ

where function f includes Eqs. (2), (3) and (5)–(7).
Because the derivative of the joint angle is needed in Eq. (3), the

optimized control value is actually _u and u is obtained by integra-
tion. This gives also an ability to limit the derivatives of the control
values without numerical derivations.

The states and parameters of the system are visualized in Fig. 2.

3. Nonlinear Model Predictive Control

The basic idea of the NMPC is to predict the future states of the
system and to minimize the given cost function. The future is pre-
dicted with the mathematical model of the controlled system (Eq.
(12)) by applying the control values to the system model in an
open loop manner. The cost function is a weighted quadratic
sum of the state and the control values. The general form of the
cost function at time tk is:

JðtkÞ ¼
XM

j¼1

kxðtkþjjtkÞ � rxðtkþjÞk2
Q þ

XM

j¼1

kuðtkþjjtkÞ � ruðtkþjÞk2
R1

þ
XM

j¼1

k _uðtkþjjtkÞk2
R2
; ð13Þ

where M is the prediction horizon size, x(tk+jjtk) is the predicted
state for the future time tk+j at the time tk, rx is the reference trajec-
tory for state and ru is the reference trajectory for the controls. In
the function, Q, R1 and R2 are symmetric positive semi-definite
weighting matrices. The optimization problem can then be formu-
lated to find the sequence of controls such that:

_u�ðtk � � � tkþMjtkÞ ¼ argmin
_u

JðtkÞ; ð14Þ

where _u�ðtk � � � tkþMjtkÞ is the sequence of the optimal control values
at time tk. Only the first control values are used for the actual con-
trol and the optimization is repeated with the new state estimates
at the time tk+1. The constraints of the optimization problem are ob-
tained from the system model, and the constraints of the states and
control values as:



Fig. 2. Variables and parameters of the kinematic model.
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xðtkþjþ1jtkÞ ¼ f ðxðtkþjjtkÞ;uðtkþjjtkÞÞ
uðtkþjþ1jtkÞ ¼ uðtkþjjtkÞ þ _uðtkþjjtkÞT
xmin 6 xðtÞ 6 xmax; 8t 2 ðtk; tkþMÞ
umin 6 uðtÞ 6 umax; 8t 2 ðtk; tkþMÞ
_umin 6 _uðtÞ 6 _umax; 8t 2 ðtk; tkþMÞ;

ð15Þ

where xmin and xmax are the minimum and the maximum values of
the states, umin and umax are the minimum and the maximum values
of the control values and _umin and _umax are the maximal decreases
and the maximal increases of the control values.

3.1. From trajectory tracking to path tracking

The natural and easy way to use NMPC is to implement a trajec-
tory tracking controller. In trajectory tracking, desired trajectory is
explicitly used in the cost function of NMPC (Eq. (13)). In this re-
search, however, the goal was to investigate path tracking meth-
ods. The first part of the cost function (state penalty) is
visualized in Fig. 3. The difference between the control points
and the desired path is penalized. Therefore, the trajectories rx

and ru are not constant and fixed to the time. The rx(tk+j) is calcu-
lated at each Sequential Quadratic Programming (SQP) iteration
such that it minimizes the distance of x(tk+jjtk) from the path. The
ru(tk+j) is calculated such that it corresponds to the position of
the rx(tk+j) in the path. The state trajectory is calculated both for
the tractor and for the trailer separately. In the following
Fig. 3. The visualization of the state p
equations, the trajectory is calculated for the tractor. The same
equations hold for the trailer, but the state components ðxfxR ;yRgÞ
are changed to correspond to the trailer’s state ðxfxE ;yEgÞ.

The target path is modelled as a polyline. The distance between
consecutive points in the path is considered to be constant. Also,
the orientation of the tractor along the path and desired velocity
and steering angles (i.e. steady state controls) are incorporated into
the path points. First, the path point (Pi) that is closest to the cur-
rent state xfxR ;yRgðtkþjjtkÞ is searched:

i ¼ argminikxfxR ;yRgðtkþjjtkÞ � Pik2
: ð16Þ

In the searching procedure, it is assumed that the local minimum,
which is found near to the minimum of the previous time step, is
also the global minimum.

Then the distances of the state from the line Pi�1 � Pi and from
the line Pi � Pi+1 are calculated. In addition, the corresponding clos-
est points and the derivatives of the distances with respect to the
state are also calculated.

To clarify the equations, the following shorthand notations are
used: point X corresponds to the state xfxR ;yRgðtkþjjtkÞ, A corresponds
to Pi and B corresponds to Pi+1. XA is the line segment from X to A,
BX is the line segment from B to X and AB is the line segment from A
to B. Finally, the subscript �x or �y represents the x or y component of
the corresponding line segment or point. With these shorthand
notations the distance (d+) of the X from the AB is:
enalty in the NMPC cost function.
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dþ ¼
Xx � ðABÞy � Bx � ðAXÞy þ Ax � ðBXÞyffiffiffiffiffiffiffiffiffiffiffiffiffi

kABk22
q : ð17Þ

Equally, the position of the closest point (rx) along the line segment
AB is:

tþ ¼
ðAXÞx � ðABÞx þ ðAXÞy � ðABÞy

kABk2 ; ð18Þ

where the value t+ = 0 means that rx = A and the value t+ = 1 means
that rx = B.

The derivatives of the distance d+ with respect to the state are:

ddþ
dXx
¼
ðABÞyffiffiffiffiffiffiffiffiffiffiffiffiffi
kABk22

q ; ð19Þ

and

ddþ
dXy
¼ �ðABÞxffiffiffiffiffiffiffiffiffiffiffiffiffi

kABk22
q : ð20Þ

To calculate the distances (d� and t�) from the line Pi�1 � Pi, the
shorthand notations are changed such that B corresponds to Pi�1.
Because the order of path points changes, the sign of the distance
d� and the corresponding derivatives also changes and must be
compensated in equations.

If the distances between the path points are close to constant,
there are four different cases to be used calculate the closest posi-
tion from the path: Case 1: position X is closest to the line segment
Pi�1 � Pi, Case 2: position X is closest to the line segment Pi � Pi+1,
Case 3: position X is closest to path point Pi and Case 4: the inner
curve (Fig. 4). In Case 1 (t� 2 (0,1)^t+ < 0), d� and corresponding
derivatives can be directly used in the cost function. Equally, in
Case 2 (t+ 2 (0,1)^t� < 0), d+ and corresponding derivatives can be
directly used in the cost function. In Case 3 (t� < 0^t+ < 0), Pi is used
Fig. 4. Four different cases to calculate the trajectory point corresponding to the current
the line Pi � Pi+1, Case 3: Position X is closest to path position Pi and Case 4: Inner curve
as a trajectory point rx. In Case 4 (t+ 2 (0,1)^t� 2 (0,1)), the
weighted average of d+ and d� is used, by using the t+ and t� as
weighting factors. The weighting makes the path smoother, though
the weighted distance to the path is not equal to the actual shortest
distance.

In Cases 1, 2 and 4, there is no need to explicitly calculate the
trajectory point rx, since the part of the cost function is:

kxfxR ;yRgðtkþjjtkÞ � rxfxR ;yRg
ðtkþjÞk2

Q ¼ d2Q fxR ;yRg; ð21Þ

where Q fxR ;yRg is the weighting factor of the corresponding states.
And the partial derivatives of the cost with respect to the state ele-
ments are:

dJðtkÞ
dxfxRgðtkþjjtkÞ

¼ 2dQfxRg
dd

dxfxRgðtkþjjtkÞ
; ð22Þ

and

dJðtkÞ
dxfyRgðtkþjjtkÞ

¼ 2dQfyRg
dd

dxfyRgðtkþjjtkÞ
: ð23Þ

The partial derivatives used in Eqs. (22) and (23), are calculated in
Eqs. (19) and (20) with the shorthand notations.

3.2. Numerical solution of the optimization problem

There are many different methods for solving the previously de-
scribed constrained nonlinear optimization problem. One commonly
used numerical method is Sequential Quadratic Programming (SQP)
(Schittkowski, 1983). There are many implementations of the method
in different packages. In this research, a Nonlinear Model Predictive
Control Tool called HQP (Huge Quadratic Programming) was selected
(Franke and Arnold, 1997, 2008). HQP has been used successfully, for
instance, in batch process control (Nagy et al., 2007), energy systems
and water systems. It solves nonlinearly constrained problems with
SQP algorithm. Convex quadratic sub problems (QP) are solved with
state; Case 1: Position X is closest to the line Pi�1 � Pi, Case 2: Position X is closest to
.



Fig. 5. Correcting the estimated position of the laser scanner using the laser scanner
measurement and recorded furrow position. Notice, that Lest is not necessarily
perpendicular to the furrow (as it is in the trajectory generation).
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the polynomial time interior-point method. The Lagrangian function of
the problem is approximated quadratically by a sparse Hessian matrix,
which is updated numerically using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method. The Jacobian matrices of the system equations
and the cost function are, however, analytically solved in this research.

The time constants in vehicle control are very different from the
applications where HQP has been reported to be used so far. Some
modifications had to be made in order to fulfil strict time limits.
The original software interface of the HQP was removed and a
new one, which serves the purposes of this study better, was
implemented. Also, because there is no guarantee of the computa-
tional time of the NMPC optimization, an interrupt routine was
added. The timer is responsible for keeping the cycle time constant.
If the time slot of the timer runs out and the NMPC has not yet ac-
quired a new solution (u = u⁄(tk+1jtk)), the optimization is inter-
rupted and the previously calculated control values are used
(u = u⁄(tk+1jtk�1), notice that the index k is now increased and the
control value used is different from that in the previous step). In
the case of the interrupt, the length of the prediction horizon (M)
is also decreased. After 10 feasible solutions, the prediction horizon
starts to increase one step at the time. Vougioukas (2007) reported
that the prediction horizon has to be more than 25 steps in order to
be better than traditional control algorithms. In this case, the pre-
diction horizon was set to be 30 steps at maximum and 10 steps
minimum.

4. State estimation

The state of the controlled system cannot be directly measured.
The obtained measurements are delayed at some specific amount
of time. Also, the control outputs are delayed and the actuators in-
clude dynamics. The NMPC controller needs an accurate estimate
of the state when the current control outputs affect the controlled
system. Otherwise, the stability of the controller is uncertain.

4.1. Extended Kalman Filter

The Extended Kalman Filter (EKF) was used for the state estima-
tion. The implemented EKF in this research follows the standard
estimation methods. The general form of the estimated system
model is:

x̂ðtkþ1Þ ¼ festðx̂ðtkÞ;uðtkÞÞ þwðtkÞ

ŷðtkÞ ¼ hðx̂ðtkÞÞ þ vðtkÞ;
ð24Þ

where fest is the estimation model for the system and h is the mea-
surement function. The difference from the prediction model used
in the NMPC is that the estimation model includes noise terms
(w(tk) and v(tk)) both in the state equation and in the measurement
equation. The noise terms are supposed to be independent and
white Gaussian noise:

pðwðtkÞÞ � Nð0;QðtkÞÞ

pðvðtkÞÞ � Nð0;RðtkÞÞ;
ð25Þ

where Q(tk) and R(tk) are the covariance matrices of the noises at
time tk.

Another difference is that the estimated state vector includes aug-
mented delayed states in order to get the delayed measurements:

x̂ðtkÞ ¼ ½ xðtkÞ xðtk�1Þ xðtk�2Þ � � � xðtk�nÞ �T; ð26Þ

where n is the number of delayed states and x is the state-vector of
the system (Eq. (10)).

The estimation model predicts the new state of the system
(x(tk+1)) with the model of the system (f in Eq. (12)) and moves
the old states further within the augmented state vector:
festðx̂ðtkÞ;uðtkÞÞ ¼ ½ f ðxðtkÞ;uðtkÞÞ xðtkÞ xðtk�1Þ � � � xðtt�nþ1Þ �T:
ð27Þ

The measurement model picks up certain elements from the aug-
mented state vector such that the delay of the corresponding mea-
surement equals the true delay measured from the system:

hðx̂ðtkÞÞ ¼

xRðtk�sðxRÞÞ
yRðtk�sðyRÞÞ
hðtk�sðhÞÞ

v tðtk�sðvtÞÞ
atðtk�sðatÞÞ
bðtk�sðbÞÞ
ctðtk�sðctÞÞ
xEðtk�sðxEÞÞ
yEðtk�sðyEÞÞ

2
66666666666666664

3
77777777777777775

; ð28Þ

where s(�) is the delay (sampling periods) of the corresponding
measurement.

4.2. Local measurement using laser scanner

A challenge in the estimation is to merge the global position
measurement produced by the GPS and local measurement pro-
duced by the laser scanner. In order to do that, the route of the seed
drill is recorded into the memory of the navigation system. The
estimated position of the marking plough (xP, yP) and produced fur-
row can be calculated geometrically from the estimated (xE, yE) po-
sition and orientation of the seed drill (Eq. (9)). The estimated
distance from the furrow can be calculated from the recorded fur-
row positions and estimated laser scanner position (xL, yL) in the
same manner as the trajectory points were calculated from the
path in the NMPC. However, in this case the direction of the dis-
tance-vector is known.

The laser scanner measures the vertical profile of the ground.
The ground level is estimated from this profile by fitting a first de-
gree polynomial to the profile by minimizing the MSE error. The
lateral distance to the adjacent swath is found by fitting the proto-
type of the furrow profile to the residuals of the first degree poly-
nomial fit (Backman et al., 2009).

The difference between the measured and estimated distances
tells how much current and past estimations differ laterally at
the angle perpendicular to the seed drill’s current heading
(Fig. 5). Correcting both estimates would require recalculating all
the recorded estimates again in every estimation step. Because this
would require too much computation time to do that in real time,
only the current estimate is corrected through the EKF. The correc-
tion equations are:



Fig. 6. The geometric presentation of the Target Point algorithm.

a = 2.8 [m] lx = 2.7 [m]
b = 1.7 [m] ly = 1.48 [m]
c = 2.3 [m] px = 1.1 [m]
d = 3.3 [m] py = 1.48 [m]
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DxL ¼ ðLmeas � LestÞ cosðh� b� ctÞ
DyL ¼ ðLmeas � LestÞ sinðh� b� ctÞ;

ð29Þ

where Lest is the estimated lateral distance calculated based on re-
corded furrow positions and Lmeas is the measured lateral distance.
The correction values are used directly in the EKF as innovation
terms, hence:

xE;measðtkÞ ¼ hðx̂ðtkÞÞfxEg þ DxL

yE;measðtkÞ ¼ hðx̂ðtkÞÞfyEg þ DyL;
ð30Þ

where xE,meas is the x coordinate and yE,meas is the y coordinate of a
pseudo measurement of the laser scanner.

4.3. Heading estimation

In the early experiments it was found that the accuracy of head-
ing measurement is crucial for the accuracy of path tracking. From
GPS a heading of vehicle can be acquired, but depending on the
GPS receiver this measurement may be poor, especially when driv-
ing at slow speeds. Furthermore, when the vehicle is not moving,
no heading can be measured by using only a single GPS.

In an earlier project, an improved positioning estimation system
prototype was developed (Oksanen et al., 2005). In the project, a
low cost GPS receiver was integrated with an inertial measurement
unit (IMU), tractor measurements and a kinematic model. The po-
sition and attitude of a vehicle was estimated using an Extended
Kalman Filter. It was reported that the main problem in the estima-
tion was related to the non-Gaussian, non-white property of GPS
positioning noise. However, the system was able to improve the
heading remarkably compared to raw GPS heading, as the IMU
contained a 3D magnetic field sensor that could be also used to
estimate the absolute heading. Additionally, the 3D gyroscope gave
information about the rate of heading change.

In the experiments reported below, the same system with some
modifications was used to estimate the heading of the tractor. The
heading estimate utilizes positioning, velocity and heading infor-
mation from the RTK-GPS in the tractor, angular rate and magnetic
field and attitude information from the IMU as well as velocity
information from the tractor. The system for positioning estima-
tion first transforms all the measurements to the tractor coordinate
system, and uses an Extended Kalman Filter to estimate the posi-
tion and heading. However, only the heading information from this
EKF filter is used in NMPC related state estimation; the positioning
measurement from the RTK-GPS is directly used.

For heading estimation, two solutions are needed: a variable
covariance in the measurement covariance matrix related to the
GPS heading measurement, and a 180 deg bias on the GPS heading
measurement when the tractor is moving backwards. If the esti-
mated velocity is slow, the covariance is set high, as the faster
the receiver moves the better the heading measurement. In the fol-
lowing experiments, a threshold of 1 m/s was used. The only
source of true direction of travel comes from the tractor wheel
speed sensor; over an ISO 11783 network. The other velocity mea-
surements are the tractor ground speed sensor and the GPS veloc-
ity measurement, but none of those contain any information about
the true direction of travel.

5. Comparative control algorithms

For comparison, alternative control algorithms were imple-
mented for both the tractor and the implement. These control algo-
rithms are independent from each other. However, in the test,
these control algorithms were used together. The combination of
these control algorithms is referred later on as the Target Point
(TP) algorithm. The tractor control algorithm is similar to the
Pure-Pursuit method (Coulter, 1992). The implemented algorithm
tries to calculate the steering angle so, that some desired ‘‘target
point’’ is reached (Fig. 6). The steering angle is calculated:

a ¼ 2x

l2
; ð31Þ

where x is the lateral distance to the path at the distance l ahead of
the tractor (Fig. 6). The look-ahead distance l is calculated:

l ¼ minðv � fdist; lminÞ; ð32Þ

where v is the current driving speed, fdist is the distance factor and
lmin minimum allowed distance. In the tests, fdist was set to 2 and lmin

was set to 2.
As with the tractor control algorithm, the implement control

algorithm is nonlinearly dependent on the error variable and has
a geometric meaning (Fig. 7). The control angle of the drawbar is
calculated as:

cnew ¼ sin�1 sinðcoldÞ �
Lest

c

� �
; ð33Þ

where cold is the current control angle, Lest is the estimated distance
to the swath edge and c is the length of the drawbar (Fig. 7).

6. Results

The methods were evaluated in two different ways: a compari-
son between the traditional path tracking method and the method
proposed in this article (Section 6.1), and, the effect of the laser
scanner measurements on the state estimate (Section 6.2).

The controllers were preliminary tested and tuned in a simula-
tion environment. The final tunings were performed with real
world environment and with the actual hardware.

The dimensions of the test vehicle (Fig. 2) are following:
The physical limitations of the control variables and joint angles
are:



Fig. 7. The geometric presentation of the drawbar control algorithm.
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max j _v j ¼ 1 [m/s2]
 maxjvj = 5 [m/s]
 maxjbj = 1.57 [rad]

max j _aj ¼ 0:7 [rad/s]
 maxjaj = 0.7 [rad]
 maxjcj = 0.33 [rad]

max j _cj ¼ 0:33 [rad/s]
The standard deviations of the state variables and measurements
were empirically fitted by filtering recorded measurements and
manually fine-tuned to get satisfactory estimation results. The fol-
lowing standard deviations were obtained in the test drives:
xR = 0.002 [m]
 xR,meas = 0.03 [m]

yR = 0.002 [m]
 yR,meas = 0.03 [m]

h = 0.00002 [rad]
 hmeas = 0.0035 [rad]

v = 0.00007 [m/s]
 vmeas = 0.000067 [m/s]

a = 0.009 [rad]
 ameas = 0.0066 [rad]

d = 0.00001
 bmeas = 0.0055 [rad]

b = 0.000001 [rad]
 cmeas = 0.0002 [rad]

c = 0.000002 [rad]
 xE,meas = 0.038 [m]

xE = 1 ⁄ 10�10 [m]
 yE,meas = 0.038 [m]

yE = 1 ⁄ 10�10 [m]
The measurement delays were identified concurrently with stan-
dard deviation measurements and the following delays were found:
s(xR,meas) = 300 [ms]
 s(vmeas) = 100 [ms]
 s(cmeas) = 200 [ms]

s(yR,meas) = 300 [ms]
 s(ameas) = 100 [ms]
 s(xE,meas) = 0 [ms]

s(hmeas) = 500 [ms]
 s(bmeas) = 200 [ms]
 s(yE,meas) = 0 [ms]
The weights of the NMPC controller were experimentally searched.
The following weights were used in test drives:
Rf _vg ¼ 0:02
 R{v} = 20
 Q fxR ;yRg ¼ 0:1

Rf _ag ¼ 0:004
 R{a} = 0.04
 Q fxE ;yEg ¼ 0:005

Rf _cg ¼ 0:004
 R{c} = 0.001
 Q{h} = 0.1
Fig. 8. Curved driving line.
where Q fxR ;yRg denotes the weighting factor of the lateral error of the
tractor and Q fxE ;yEg denotes the weighting factor lateral error of the
implement. The variable Q{h} denotes the weighting of heading error
of the tractor. R{v}, R{a} and R{c} are weights for the steady state con-
trol values. Rf _vg, Rf _ag and Rf _cg are weights for the optimized control
values changes.
6.1. Comparison of different path tracking methods

The different path tracking methods were compared in two test
procedures. In the first test, denoted in this study as ‘‘straight
path’’, the driver made the first straight driving line, a turn in a
headland and switched the guidance system on. After that, the
speed was kept constant and the previous driving line was fol-
lowed for 30 m. In the second test, denoted in this study as ‘‘curved
path’’, the driver started the test in the same way as in the first, by
making the first driving line. At this time, the driving line was
curved with a 50 m wavelength and a 4 m amplitude (Fig. 8). The
guidance system followed the driving line for the next four driving
lines, and also when executing the headland turnings.

The results of the first tests are presented in Figs. 9–11. The fig-
ures represent the tracking errors of the tractor (Fig. 9) and the
trailer (Fig. 10) calculated from the state estimates, i.e. control er-
ror, and the distance to the adjacent driving line (Fig. 11) calcu-
lated from the raw GPS measurements, i.e. absolute error. The
measurements are visualized in the form of a box-and-whiskers
plot. The box in the plot represents the middlemost half of the data
and the line inside the box represents the median value. The whis-
kers represent the smallest value and the largest value. The crosses
represent outliers. The tracking errors were calculated in real time
from the state estimation of the tractor–trailer system and the
same measurements were used as error values in controllers. The
distance to the adjacent driving line is calculated afterwards from
the raw VRS-GPS measurements. The target distance or the work-
ing width was 2.95 m. All measurements are taken at 100 ms
intervals.

The results of the second tests are given in Figs. 12–14. The fig-
ures represent the same measurements as in the first tests; the
tracking error of the tractor (Fig. 12) and the trailer (Fig. 13) and
the distance to the adjacent driving line (Fig. 14.). All of the
measurements were taken under the steady-state conditions after
the transition from the headland path.

6.2. Estimate correction with laser measurements

The position estimation with and without laser scanner mea-
surements was analyzed with similar test drives as the path track-
ing comparison. The driving speed was 8 km/h in every test. For
clarity, unreliable laser scanner measurements are removed from
the pictures and from mean error calculations as well. The quality



Fig. 9. Box-and-whiskers plot of the tracking errors of the tractor in straight-path-
following tests.

Fig. 10. Box-and-whiskers plot of the tracking error of the trailer in straight-path-
following tests.

Fig. 11. Box-and-whiskers plot of the distance to the adjacent driving line
measured by VRS-GPS in straight-path-following tests.
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value 0.4 was considered to be the best threshold value to distin-
guish between unreliable and reliable measurements.

Table 1 presents the same results as in Fig. 15 (the straight line
following test) and Fig. 16 (the curved line following test). Addi-
tionally presented in the table are the mean and the variance of
the calculated tracking errors of the tractor and the trailer. In the
table, the column labelled as ‘Laser’ consists of tracking errors cal-
culated directly from the laser scanner measurements. The column
labelled as ‘Laser Diff.’ is the calculated difference between the
estimated tracking error of the trailer and the laser scanner mea-
surements. The column labelled as ‘VRS Diff.’ Is the calculated dif-
ference between the estimated tractor positions and the true
delayed measurements. The statistical values for the laser scanner
measurement and the difference between laser and estimated trai-
ler error are calculated only from the values when laser scanner
measurement is considered to be acceptable whereas other values
are calculated from the whole time slot.
Fig. 12. Box-and-whiskers plot of the tracking error of the tractor in curved-path-
following tests.

Fig. 13. Box-and-whiskers plot of the tracking error of the trailer in curved-path-
following tests.

Fig. 14. Box-and-whiskers plot of the distance to the adjacent driving line
measured by VRS-GPS in curved-path-following tests.
7. Discussion

The goal was to develop a navigation system for a tractor
–trailer system, which is able to drive at least 12 km/h with less
than 10 cm lateral error. The results show, that the goal is reached
most of the time. However, there are situations where the control-
ler was not able to keep the lateral error within the accepted range.
This is caused mainly from the slow dynamics of the drawbar and
uncertainties in the measurements. Results show also the superior-
ity of the proposed method compared to the simple geometrical
path tracking and separate implement control methods. However,
the cost of the better accuracy is the complexity of the system. The
algorithm presented in this study is computationally a lot heavier
and not equally reliable as the comparing methods. It is recom-
mendable to implement a backup method, which is simpler and
more robust but not necessarily useful for accurate path tracking.
The backup system could take over the control, when the NMPC
fails in real-time.

The method for the estimating the state seemed to be sufficient
for the required path tracking accuracy. As shown in the results,
the controller was able to keep the errors at the same ranges in
both cases: the laser correction on and off. But in the straight line
following tests, the standard deviation was much smaller than in
the curved line following tests. The most interesting values are
the mean values and standard deviations of the difference between
the estimated trailer errors and laser scanner measurements (Table
1, column ‘‘Laser Diff.’’). The deviation is more significant when the
laser scanner correction is off. This implicates that the estimated
position of the trailer is not correct when the laser scanner is not
used if it is assumed that laser scanner measurement is correct.
By using the laser scanner, more reliable position estimation is
achieved. The laser measurement system would be more usefully
and justified, if the GPS-device would be less accurate or other
measurements would include more noise or systematic errors. Fur-



Table 1
Test results in statistical form.

Laser correction Laser OK [%] Tractor l(r) [m(m)] Trailer l(r) [m(m)] Laser l(r) [m(m)] Laser Diff. l(r) [m(m)] VRS Diff. l(r) [m(m)]

Straight line ON 77.5 0.022 (0.020) �0.004 (0.014) �0.010 (0.017) 0.005 (0.010) 0.001 (0.013)
OFF 85 0.051 (0.028) 0.028 (0.013) �0.013 (0.012) 0.041 (0.020) 0.006 (0.011)

Curved line ON 52.8 0.002 (0.063) �0.037 (0.108) �0.056 (0.108) �0.005 (0.024) 0.003 (0.022)
OFF 49.2 0.031 (0.073) 0.021 (0.076) �0.007 (0.102) 0.004 (0.054) 0.011 (0.022)

Fig. 15. Tracking errors in straight line following tests without (on the left) and with (on the right) laser scanner measurements in the Kalman-filter. Errors are measured by
laser scanner and VRS-GPS.

Fig. 16. Tracking errors in curved line following tests without (on the left) and with (on the right) laser scanner measurements in the Kalman-filter. The tractor went over the
mark-furrow and the laser scanner was unable to measure the distance for the whole time.
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ther investigation is needed to determine how stable the estimator
would be if a cheaper and less accurate GPS-device is used.

Because of the delays, the estimation method predicts the fu-
ture state of the system. The standard deviation of the difference
between the estimated positions and VRS-GPS measurements (Ta-
ble 1, column ‘‘VRS Diff.’’) are the same order of magnitude as the
VRS-GPS accuracy by itself, so it cannot be said for sure which one
is more accurate without other additional measurements. But it
can be said that the prediction ahead does not increase the error
or reduce the accuracy.

In the NMPC, the deviation of the tractor from the path was also
in the cost function, although it is not the objective of the control
problem. This is because the system would not be stable otherwise.
Also the weight ratio between tractor and trailer was empirically
searched to get sufficient tracking accuracy of the trailer on the
one hand and stable behaviour of the tractor on the other. An alter-
native final state constraint or infinite prediction horizon would
also work, but those are impractical to implement.

The implementation of the cost function of the NMPC controller
is similar to the commonly used potential field method (Murphy,
2000). The difference is that the NMPC controller predicts the fu-
ture states and the cost function is calculated in several positions
ahead of the tractor’s current position. By this way, the tractor is
able to follow the path accurately along an almost optimal trajec-
tory with respect to the physical constraints. Moreover, the avoid-
ance of static obstacles is easy to implement using the scheme of
this study (Vougioukas, 2007). Application for the avoidance of
other moving working machines is also possible, but may require
more work as compared to avoiding static obstacles (Vougioukas,
2009).

8. Conclusions

In this article a path tracking method was proposed for a
tractor–trailer system by using a Nonlinear Model Predictive Con-
troller. The research is different to other researches where NMPC
was used in that the objective is to keep both, the tractor and
the trailer, on a path. This study is useful because unlike other sim-
ilar research where a tractor–trailer system is controlled, the
uncertainties in the environment, due to slipping and sliding, is
considered and additionally, the control problem is consider as a
multivariate nonlinear control problem rather than as a separate
or a linearized problem.

The proposed method to calculate the cost function and the tra-
jectory in the NMPC makes the controller suitable for path tracking,
where the desired positions and the time are not coupled. Other
similar researches with NMPC typically use the controller for trajec-
tory tracking, where the desired positions and the time are coupled.
A novel variable horizon length was also used in this research. This
proposed method makes it possible to use an optimal length predic-
tion horizon with respect to the computational capacity. The hori-
zon is decreased when the capacity runs out and increased when
the solution is achieved in a shorter time instance.

The NMPC requires an accurate state estimate in order to be sta-
ble. The global positioning system, GPS, was used together with the
model of the system in an Extended Kalman Filter. The heading
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estimation of GPS was improved by using an inertial measurement
unit and separate EKF filter. The position estimate of the trailer was
also improved by using a local relative measurement by recogniz-
ing the adjacent driving lines using a 2D laser scanner.

The results showed that the NMPC is a feasible method to real-
ize path tracking. The lateral error of the trailer was well below the
required 10 cm in straight paths and within the boundaries in
curved paths up to 12 km/h driving speed. The objectives were
therefore, achieved with the presented system.
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