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Mobile robots must often be:
— Deliberative — decide among options
— Perceptive — aware of the surroundings
— Reactive — capable of fast action
They must be both
— smart and
— fast

... doing that involves tradeoffs.

In support of the above, need to be ...
— Predictive — able to project consequences
— Active — able to execute a plan of action

You need dynamics models for both of these.
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Must model ...
— Information processing and propagation.
— Physical vehicle / environment interaction.

Often need to map ...
— what you can do (exert forces)
— what you care about (trajectory through space).

Latter requires integrating the dynamics.

Cases:
— Braking
— Turning
— Vehicle Rollover
— Wheel Slip and Yaw Stability
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A) Last resort response to problems.
— Collision i1s imminent due to

* NO solution or
 inadequate planning or control.

B) Deliberately slow down.
— On slopes
— The motion is finished.
— In order to turn around.
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Braking Model

» Assume brakes are applied instantly:
* Free body diagram:

— Friction and Weight are coupled.
* Do heavier vehicles take longer to stop?

f: u.F, = pymg
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Equate work done by external forces to initial
Kinetic energy (assume it is all used up).

|
EmV — HsMEBSprake
Solve for braking distance.:

2
v

2148

Sbrake —

Do heavier vehicles take more distance to stop?
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Impact of Slopes

*Again equate work
done to initial KE:

1
2

Solve for braking distance:

Effective coefficient
of friction:

Then:
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Simple Model on Slopes

Critical angle exists
beyond which
gravity overcomes
friction....

Atan() is highly
nonlinear.

Braking Distance

Braking Distance vs Slope
atV=20ml/sec,p=0.5

0.1

0.2 0.3
Terrain Downslope in Rads

0.4

0.5
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More generally: S

[Fod = Jmy’
0

Robots can compute this.
— The terrain shape is known.
— Keep integrating until Kinetic Energy exhausted.
— Final value of s is stopping distance.
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Make small angle assumptions, angles in radians:

cO =1 s0=20
_ _ . 10% slope reduces p
Change in effective coefficient: by 0.1 ]
Heff(e) - (;.1509—38) ~ Ug — 0
Ratio of sloped to level stopping distance:
20 _ 1 A [1 + E—]
S0 ]l — E Hs
| Mg
Stopping distance increases or decreases by the
factor 0/1.
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Goal Is to cause terrain to exert a moment on the
vehicle
— By 3rd law, vehicle must exert a moment on the terrain.

May actuate:

— Wheel steering (Ackerman)
— Wheel speeds (Differential, skid)
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Simple Motion Prediction

For small steer angles: curvature

Integrate the differential equations using “back

substitution”:

(1
steer angle and

velocity onto the
path the robot

follows. Assumes
\ flat terrain.

he mapping from

K(t) = o(t)

J

{
0(t) = 90+jV(t)a(t)dt

to
x(t) = x0+jV(t)cos(e(t))dt

P

y(t) = yO+IV(t)Sin(B(t))dt
0

y
o

Note mapping from
inputs to outputs are

integrals.

~

Errors in steering are integrated twice to determine
errors in predicted position.
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A curvature step is the
most ambitious
maneuvelr.

Not modelled steering
response leads to
collisions with obstacles
above 3.5 m/sec speed

One Curvature
Various Speeds
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The path followed is
generally a function

of speed. ' 10 6 2 2 6 10 14
X coordinate in Meters

Therefore, they
must be estimated

together. “Reverse Turn”
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Two limits on curvature (slipping and rollover) can

be computed

Assuming velocity is constant, and
curvature rate iIs limited and

constant

Slipping, centrifugal > friction

Rollover, centrifugall > gravitation

A,, Aalto University
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Vehicle Rollover

Contemporary mining, forestry, agriculture, and military
vehicles, operate

— on slopes and/or
— at high speeds
Field robots do rollover!

— They at least need a reactive system if predictive
elements fail
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More likely in factory and field robots.
Happens due to combinations of:

— narrow wheel spacing,

— high centers of gravity

— high inertial forces (speeds and curvatures)
— steep slopes

Incidents may be:

— Terrain induced (slide sideways into a curb)
— Maneuver induced (turn too sharp on a hill)
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Since we are talking about
a moment of a single
force...

— Result can be understood
in terms of the direction of
gravity.

Liftoff criterion is first
satisfied when gravity
vector:

— emanating from the center
of gravity (cg)

— points at the lower wheel
contact point.

A,, Aalto University
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Vehicle Rollover, Dynamic Case

Vehicle is turning left

Use D’Alemberts principle: Ma is reversed in sense
— |.E. treat — ma like a real force. per D Alembert

Moment balance:
t
— fzit — mayh + mgs¢dh + mgc ¢§ =0

Solve for lateral acceleration

in g’s:
a tf, 1
2 = [£c¢+hs¢— “ |/n
g 2 mg_
The lateral
acceleration threshold. g_l}.’ —
£
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Vehicle Rollover, Dynamic Case

Rewrite last result;

a,6 — gs
a, ~8s¢ _ t
gco 2h
Liftoff when net noncontact specific force: a. — gsb
— A a v~ 8
f = g—a
. . _ geo ~
Points at the outside wheel contact point.

A pendulum mounted at the cg aligns with this
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Vehicle Rollover, Dynamic Case, Interpretations

Static case is just special case of dynamic (ay=0)
Stability increases with:
— Lower cg h Y
— Wider tread t gc¢$ -
— Lowering slope
— Decreasing acceleration

 Slowing down

* Reducing curvature
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Theory generalizes to vehicles of any shape.

Stability pyramid = the pyramid formed with the wheel contact points with
the cg at the apex. Each edge is a potential tipover axis.

— Unbalanced when: net noncontact specific force is
outside one of the edges

M= r x f
Me a> 0

Wheels need not
be in the same
plane.
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SlipAngleB=w -
Define the angle between the actual and intended

Velocity ~ ~
B = acos[(V - V)/([V[IV)]
actual reference
The velocity may be incorrect in all

3 degrees of freedom.
» Express errors in body coordinates:

- — . _ -

-06‘ —s0 0_ Vi oV,
. _ W ~
y[ = |s® ¢O 0 V}’ + SV}’ V = R(0)(V +3V)
0 0 01 0) owm |/

actual reference
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Wheel Slip Graphs
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 Slip can be expressed as a function of actual or
reference velocity (and other things):

« Compensate in body coordinates.

reference actual

V=TR(0) V-8V
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* Braking distance:
— Increases quadratically with initial speed
— depends heavily on slope
 Turning and Swerving:
— predicting steering maneuvers requires calibrated
dynamic models.
* Rollover stability can be measured with a
pendulum at the cg.
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Robot Trajectory Following

Perception Based Control

Steering Trajectory Generation
Optimal and Model Predictive Control
Intelligent Control

a bk wdE
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Representing Trajectories

* Assume velocity is fwd
along body x only

T
o States: Y= [xy6|
e Inputs: «=[cr]

* Nonlinear state space on 2

model in terms of time. But notice

speed V can be
factored out.

/?%

J _.T_ _Co.sw_ jﬁf x(0)| "|cosw
il — | siny|V vty = | v(0) +j. simy | Vdt
W] K (7)) w(0) o] x
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Representing Trajectories

e This means we can rewrite 36

the dynamics in terms of
distance

dx _dx ,ds  dx

E:V dr dr ds

Division by V is\
only a problem
if you insist on
a-etyature for

* Nonlinear state space
model in terms of distance.

J _.r_ _CO_S.W_ X(s) ¥(0) ' cos Wtkevery time. )
E Y B '5"'”‘4’ J"( S) - 1(0) —|'_J. ,5‘;5”[” ds
Al | K W(s)] w(0)] o x |
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States:
Inputs:

T
Y= |xw 8] -

= [}; Iﬂr

Nonlinear state space model:

dar
dr|”
5

Y CcOs O

sin B

K

/ on

nﬁs

Suppose a trajectory generator has
produced a reference:

[u (1), x (1)]

Assume full state feedback.

A”
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Linearization

* Linearized Dynamics:

ox 0 0 —vsy| | dx cy 0.
i vl = 100 v sl F w 0 ov
dt 0} vew | | O) Sy 8

Oy 00 0 ||dy| |0 1

* Convert coordinates to N 8
path tangent frame. R s -

?S - 000 ‘?S LI Very Simple System o T
onf = (00 V||dn|T|00 e Ii 3 = sn@]
56 00036 |o1 oo
Time Invariant for
e Of the form: constant V

0s(t) = F(1)ds(t)+ G(r)ou(tr)
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e State Feedback

du(t) = —Kds(1)

* We know speed can
control s and steerin\;\%
can control nand O 5
SO:
g
0 k, ke
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State Feedback Control Law (Total Control Law)

- - k. 0 0 b
u(t) = u (1) +ou(r) = ut)—- 3n
0 k, k,
= by
(Feedforward > N\
(path Feedback
curvature and P and PD
kspeed} y kcontrollers )
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« Open Loop Servo Execution

Kd(s) — K(Smeasured)

* While simple in principle, open loop execution
does not reject disturbances.

* Even a single initial error can grow forever if not
compensated.
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« Distance Based Open Loop Control
* |lgnore speed by converting to distance as
the independent variable.

* Recall, this implies a particular path through

space because: s
Y(s) =yt IOde

S

x(s) = jcos[e(s)]ds

0

y(s) = [sin[6(s)]ds
0
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 Heading Error Compensation

Ak = AYIL

Kd(s) = K:(Sm-;easn.lrracl) + Ax

Plus a
correction

Pass original
command to
output

* Passes original command directly to output.

* Bends the response path to be parallel to the
desired.

 BUT: Does not move paths together.
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* Full Pose Error Compensation, crosstrack error term

Ak = AL
Ax = 28n/L°

* Passes original command directly to output.
* Onis coordinate of closest point in body coords.

Also adds two corrective amounts intended to
remove present error.
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State feedback, Eigenvalue Placement

* New closed loop 50
dynamics matrix:

k0 0
F-GK =-[0 0 -

7 0S
0 k, k n
- = on

* Characteristic poly:

Mk, 0 0
det(M —F+ GK) = 0 L —vy
0 k, +k,

) Any coefficients are possible
(W + 22k, + k) + ME Yy +ER) FEEM ] so.. ..

S n

Any roots are possible.
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* Both curvature gains can be related to a
characteristic length.

-

ko=

1
k, = v E

n ;3
L._

* Then dx, = d3y/L removes heading error
after moving a distance L.

* And 5«, = 28n/L° removes crosstrack error
after travelling a distance L.

* Also 1, = 1/k, is the time constant of speed
error response.
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* Observed feature residuals can be generated by:

— Perceived errors in pose estimates in a region of
overlap (registration) or ...
— Real errors in pose itself in a positioning task.

* |n the latter case, it is natural to close a servo loop
and drive the system to move to reduce the error.

This is visual servoing.
* Must maintain feature correspondences during

motion:
— Embedded feature tracking problem.
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Perception Based Control, Visual Servoing
Architecture : Errors

* Image-based control forms errors in image space.

— Servoing done in image space

* Position-based control forms errors from object
poses:

— Poses derived from image features
— Servoing done in pose space.

q o+

Joint controllers

|

Control
law

Power
amplifiers

I

>

Joint controllers

1

Control
law

Inverse
kine= |

Power
amplifiers

matlcs

Feature

A”
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Pose

determination [~

Feature
extraction




* Camera may be moving or stationary.

* Required motions are reversed with respect to
each other.

Eyve-in-Hand system Eye-to-Hand system

(ol
i
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Base ensor Base Sensor

.
- |:?> T Control’—> System ’——) —
- -

Present Image Reference Image

[*=

| tg

Perception |f-

* Problem: drive the system (usually with a camera attached) to turn the
present image into the desired image.

* An excellent way to drive up to something with a poor pose estimate.
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Error Coordinates : Image Based Visual Servoing

4 r+ Tra ector
T J y Control System
Generatlo
! z
05€ o Perceptio
Determinatio

R

* Explicitly calculate the pose of the object relative
to the camera.

* Compute the error in the pose.
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* Trajectory generation is necessary for any kind of
precision control of mobile robots.

* The problem occurs in various forms:
— “Steering” (curvature generation) problem.

— “Smooth stopping” (velocity profile) problem.
— Both at once

* Sometimes in terms of linear and angular velocity.
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* Let a trajectory be a specification of an entire
motion.

— Could be explicitly in terms of state:

X(O(f) <t<tp);

— Could be implicitly in terms of inputs:

tu(t)|(tp <t<te)}
— Need both for 2 dof control

Both can be visualized as the trajectory followed
by the tip of a vector over time.
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The robot must not only follow
the intended curves but it must
come to a stop neither too early
(which would make achieving
the next goal impossible) nor too
late (which will cause a
collision).

A,, Aalto University

Load cannot be approached sideways.
Visualize driving backward from goal.
Maneuver must initially turn away from the pallet.

Precision control is necessary:
— when goals states must be achieved precisely
— when paths must be followed precisely.

Forktruck

Pallet
P




—

* Dynamics: ¢ = fx, u)

* Physical constraints: uO] 80D o] < (0

— Turn radius bounded from below

— Curvature is bounded by mechanisms and terrain friction.

X(t)) = X, Start State ~ G0al State

* Boundary conditions:
x(tf) = X, (%Y,0,5,V)g (X,Y,0,5,V);

* Problem: determine an entire control function
u(t) which generates some desired state trajectory

X(t).
* |t’s the problem of inverting a differential

equation.
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* Every u(t) generates some x(t)...

x(t) = x(0) +f3 f( x, u, t)dt

* However, many arbitrary x(t)’s represent
infeasible motions.

— Mathematical reasons — underactuation
— Physics reasons - friction
— Power related reasons - horsepower

A,, Aalto University



* Function space of all u(t) is too large to search.
* Parameterize inputs: u(t) > u(p, t)
* Easy to see by Taylor series that p spans all
possible u(t)
— Pick any u,(t) you like.
— Write its Taylor series
— Coefficients p, approximate u, (t) arbitrarily well.

— But u, (t) was arbitrary too = so p, spans everything!
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Steering Trajectory Generation, Formulation as a Root
finding Problem, Parameterization

* Now p determines u(t) which determines x(t), so
dynamics become:

x(t) = fIx(p, t), u(p, O, t] = f(p, t)

* The boundary conditions become:

t
Integrals are suppressed -
notationally — but they g(p: to, tp) = X(to) + If(E: t)dt = x,

are still there.

ty

* This is conventionally written as:

Q(Ea ton tf) — h(lgatoatf)_)sb =0
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9(133 t()a tf) — O

* That is a rootfinding problem!
* Conclusion:

— the problem of inverting a nonlinear vector differential
equation

— can be converted to a rootfinding problem
— using parameterization.

The detailed analysis is out of the scope of this course

Clothoids, linear curvature polynomial, and Polynomial
Spirals can be used as primitives
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Steering Trajectory Generation, Polynomial Spirals as
example

* These curves can achieve any terminal posture.

Db

il

)
!

il : b ,"'; i

! . §\ A/ V] q A I_
N

oK 7

..|I1 U h
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State Space control is powerful
2 dof control is a good way to follow trajectories.

Parameterization is a good way to generate them for open
loop control.

Linearization Is effective for nonlinear control, but....

Visual servoing implements a closed loop using vision as
the feedback sensor.

A basic version tries to drive an image into coincidence with
some reference image by:

— forming errors in image space.

— deriving corrective velocity commands from the
errors.
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Prediction enables search

— creates the capacity to elaborate alternatives.

Optimality

— creates the capacity to decide what to do.
Mobile robots are intelligent (=perceptive and deliberative):

— perceive the environment around them} Perceptive

—predict environmental interactions for —

candidate motions.
—rank alternative actions.
—execute a chosen action.

L Deliberative

—

The intelligent control of mobile robots is an optimal control

problem

A,, Aalto University



« Perceptive horizon is intrinsically limited

* S0, new information arrives all the time

« Have to keep changing the plan.

* Need models to do adequate prediction for planning.

« The intelligent control of mobile robots is a receding horizon
MPC problem

In this course we jump over the details of the of optimal control
and NMPC and their numerical implementation
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e

minimize Jix.u t] = d(x(t)) + "f_{nj.@m’r t, free

Boltza

fp
subject to: . uelU Form

X(fy) =X (1) =x (when ¢ ) 1s absent)

-0

Problem has two main components:

— UTILITY: doing something useful (probably to get
somewhere, maybe in some best fashion).

— CONSTRAINT: while respecting some constraints.
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In Bolza form, want to optimize some functional representing
“cost” or “utility”: t
J = o[x(tp)] +JL(X, u, t)dt
to
Where:

d)[x(z‘ ) ] (endpoint cost function) may be used to represent
the deswe to reach some particular terminal state.

* the integral term can be used to, for example, express the
cost of driving at high curvature.

A,, Aalto University



7

In Bolza form, want to optimize some functional representing “cost

or “utility”: t,
J = o[x(tp)] +JL(X, u, t)dt
Where: £

« ¢[x(1)] (endpoint cost function) may be used to represent the
desire to reach some particular terminal state.

« the integral term can be used to, for example, express the cost
of driving at high curvature.

Solution

* “The” Minimum Principle Or “the” Maximum Principle by
Pontryagin

« Dynamic Programming, Bellman equations

A,, Aalto University



Solve the following problem for some
finite prediction horizon
t.:

ts

J = o[x(tp)] +IL(§, u, t)dt
lo
Execute the optimal control u*(t) for a
control horizon t.

Do it all over again for t,+ t_and T+ 1

A,, Aalto University




Model Predictive Control , Solution Methods
(only) Direct Methods: Finite Differences
* Discretize the dynamic model:
x(k+1) = x(k) +flx(k), u(k))At

* Discretize the objective:
N-1
J = d(x(n)+ Y L(x(k) u(k), kAt

k=10

* This is a constrained optimization problem
with linear constraints.

* There are Nm unknowns in u( ) and Nn dof
in X( ) so there are N(n-m) dof left for
obtimization.
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* Process:
—Start with a guess of the inputs u( ) for every k.

—Integrate the system model to determine x( )
for every k.

— Compute J(x,u).

— Compute its gradient w.r.t. u.

— Line search the descent direction.
— Repeat until convergence.

A,, Aalto University



Model Predictive Control : Adaptive Horizon

TARGET PATH

@ CANDIDATE REACQUISITION
POSTURES
~— SUB-OPTIMAL CANDIDATE
CORRECTIVE TRAJECTORIES
w OPTIMAL CORRECTIVE
TRAJECTORY

CURRENT ROBOT STATE

OPTIMAL CORRECTIVE

e
TRAJECTORY (#6) Sp— Y(u,q,t)dt

.......... o ':’/;lh-(tfdt

ot
sl Jo 'Hzecrosstmck(t)2 dt

POOOOOOOOOBO
REACQUISITION POSTURES
X YirWirVir 0;
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« Optimal Control is a generalization of the Calculus of
Variations which expresses the mobile robot control
problem well.

* Trajectory generation fits very nicely into the standard
form of an optimal control problem.

« Curvature polynomials of arbitrary order are a
convenient representation of trajectories.

A,, Aalto University



Nonlinear Model Predictive Control (NMPC) in
Semiautonomous Systems at Aalto
Example: Autonomous driving of Tractor and
Implement




The general structure of the NMPC problem

The goal is to minimize cost function J(x(t),u(t),t) that
usually has guadratically weighted integral terms on
states and controls compared to some reference
trajectories over the length of the prediction horizon .

min J(x,u

x(-),u(-) Nl

s.t. X(t) = f(x(t).u(t))
x(0) = xg
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The discretized NMPC problem

The discretized quadratic objective function (criteria) to be minimized

T (xow) = S (1) = Xy ()1 + 10Cte) = rep (B0 ) HIXEN) = Xoer (E0) 1

min J(x,u)
X(‘)a“(‘)
st X)) = £(x(t),ultr))
x(0) = xq
Wyin i u(tk) i: Wy aa
Xmin £ X(tﬁc) i: Xmax

The criteria iIs minimized in every control cycle.
In NMPC, only the first control is implemented.
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The basic stages in the NMPC, e.g.

The basic stages in the developed toolkit VIATOC NMPC are:
— Integrating the state trajectory and calculating the
sensitivities
— Calculating the direction of the steepest descent,

projecting the steepest descent, and taking the appropriate
step in that direction.

— These stages are repeated until a predefined number of
iterations or a given time limit is reached.

— The goal is not to reach the exact optimum, but a trajectory
that is sufficiently close to it.

,, Aalto Unlverslty
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AGROMASSI
Assisting and adaptive agricultural machine
Partners: MTT, HY, Parker, Wapice, Valtra, Suonentieto, companies

Distributed control system over ISO 11783
Human friendly, natural HMI; Safety

Toolchain: Matlab/Simulink + C-code generation + PoolEdit + WInCE real-
timecomputer

Co-driver, autopilot
Cartesian motion control
Connection assistant
Contract Team assistant
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https://www.youtube.com/watch?v=y_BkCKi47sM&list=PLHlPlaXZGCy2kp7BSRna8j8ZvGQPJNUel&index=11

Agromassi Co-driver, Autopilot
Dissertation of Juha Backman

,, Aalto Uni Juha Backman
School fEI t cal 16.4.2014
Engineering



Co-driver, Autopilot

Cruise
control

Steering
control

Hydraulic
valve

GUIDEX

ISO 11783

School of Electrical 16.4.2014
Engineering
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AGROMASSI

Integrated Navigation for Agricultural Machines
GOAL: “co-driver” , Doctor Dissertation of Juha Backman

W,

e Yol Y
i (@l

‘(‘.‘.’1\, 4 B Follow adjacent swath

Follow adjacent swath
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AGROMASSI Co-driver; pole collision avoidance, by Juha

Backman
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AGROMASSI Co-driver; pole collision avoidance, by Juha

Backman
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Control algorithms

Path,,

. Minimized areas

* Nonlinear Model Predictive Path Tracking for the combination of tractor
and implement

« The kinematic model for the tractor and implement is used as dynamic
model. Still quite complicate model!

- Because the tractor actuators are not infinitely fast, the dynamics of
those are modelled, the desired speed and steering angle, with simple
15t order models.

« The dimension of state vector 11, the dimension of input vector 3.
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Path planning for turnings in the
headland

path
planning

e Dubins’ Curves consist of six
different turning types. These
turnings consist of arcs with a
maximum curvature and a straight
line segment between the two arcs.

* LRL and RLR are basic turnings
types /
« Asimplified path planning algorithm ¢

based on Dubins curves.

m]
N
= S N O — T S T N

C

Aalto-yliopisto Juha Backman
16.4.2014



Avoiding of collisions via path planning

There are different ways to include the
object avoidance problem within the
NMPC

The option of modifying the cost
function was chosen

A cost that ensures that the vehicle
will drive past the obstacle is added

The area where the original cost is
changed into the avoiding cost is
illustrated right.
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The commissioning

« Experiment setup for estimating parameters
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Results: Complete operation on a real field
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Figure 5.3. Driven trajectories (blue) and generated path (black) on a real field.
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Navigation System for
Modular Agricultural
Machines using Optimal
Control Methods and
Industrial Standard
Network

http://lib.tkk.fi/Diss/2013/isbn9789526053912/isbn9789526053912.pdf

Ao Aalto-yliopisto
|



Summary NMPC Control

« Optimal Control is a generalization of the Calculus of Variations
which expresses the mobile robot control problem well.

« Trajectory generation fits very nicely into the standard form of an
optimal control problem.

 Curvature polynomials of arbitrary order are a convenient
representation of trajectories.

* InNMPC, it is easy to take the mechanical constraints of the
system into account. Virtual constraints, e.g the angular velocity of
the individual joints can be constrained.

« NMPC is computationally expensive

« The redundancy problem of the controlled platform can be solved
In elegant way:

« Combined NMPC motion control of a mobile platform and a
crane, reference path for boom tip: 7 DOF to control 3D position
has been demonstarted by Autonomous systems group
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Hierarchy

e We are here now ...

Deliberative Autonomy

* Responsible for
responding to the

Perceptive Autonomy

immediate environment.

Motive Autonomy

* Requires feedback of the
state of the environment
(e.g. perception).

* May only need relative
position estimates.

Y Gt

Engineering




Intelligent Predictive Control: Perceptive

By assumption: Environment is
partially unknown and must be
measured.

Don’t know beforehand where the
obstacles are - or you would have
planned around them already. G

“Intelligent” means understanding
your surroundings. Hence:

— IC must be perceptive.

Perception is discussed later.

— Here, we will use an environmental
model that was produced by
perception.
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Intelligent Predictive Control: Predictive

e Latencies and robot
dynamics mean it takes
time for actions to take
effect.

 Robot may also be
under-actuated.

* Elements in the scene
may be dynamic.

* Hence IC must be
predictive.

©®Ron Leishman * illustrationsOf.com/1047633
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Intelligent Predictive Control: Reactive

* However, perception must be
done continuously because
effective sensor range is
limited by:

— Missing parts (occlusion,
limited sensor range)

— Uncertainty
* Also, prediction of dynamic

obstacles is only valid for short
periods of time.

* Must:
— perceive continuously
— react to what you can see.

— do it all over again high
frequency.
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1: Consider “all” options for
proceeding through space.

Check each for problems.

Eliminate those options which
are definitely (or probably)
problems.

If any options remain, pick the
best from the perspective of
mission execution. Goto 1:

If none remain, do something
which reduces your losses

If you survive that, ask for
help, or execute other
recovery mechanisms.

Aalto University
School of Electrical
Engineering




Generic Intelligent Control Loop:

Elements of Effective IPC
* A model of your capacity to move

— Motion prediction

* A model of the state of the environment
— Representation

* A capacity to evaluate alternatives for
— Trajectory evaluation

* A capacity to search through the space of possible
motions

— Optimal control
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Formulation as Optimal Control:
Objectives and Constraints

* Motions can be ranked based on cost/utility and
satisfaction of hard constraints:

e Simple case:
— Score each motion (utility)

— Do not hit obstacles (constraint)

 However, obstacles can also be encoded as cost of
traversal and there are motions which do not
satisfy feasibility constraints.
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Formulation as Optimal Control:

Objectives and Constraints
* Objectives to Minimize

— Risk level
— Path following error
— Path length to goal

— Integral speed error.

* Constraints
— Dynamics (“feasible”) X=f(x,ut) ; ueU
— Don’t hit obstacles (“admissible”) X(t) ¢ O
— Don’t tip over (“stability”)
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Formulation as Optimal Control:
Equations

* Over Time (Trajectory)
:
Jx 1] = d(x(t) + [ L(x, x, 1)

x=fx,ut) ; “ueU

X(t) € S X(tf) € G Line ]
* Over Space (Path) S Integral

J[x. 5. = 9(xp) + [L(x,u,5)ds

X(S0)e S X(5) e G

x=fLus) : ueU
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Formulation as Optimal Control:

Encoding the Mission in the Objective

The objective may impart differing levels of More
Responsibility
&

responsibility to intelligent control.
1) Fixed, detailed path - keep going or stop.
AGVs do this in factories.

2) Fixed path with speed modulation.
Following behavior is a special case of this.

3) Follow default path with deviation to
avoid obstacles permitted.

4) Sparse waypoints to hit with complete
authority to plan the paths between them.

5) Cover an entire area (e.g. mow the
grass).

6) Search for something, run from
something, or pursue something.
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Formulation as Optimal Control:
Evaluation

 Methods to compute feasible trajectories were
covered earlier in motion prediction (dynamics).

* This section is about how to evaluate trajectories.
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Formulation as Optimal Control:
Representation

 Methods to compute feasible trajectories were
covered earlier in motion prediction (dynamics).

* This section is about how to evaluate trajectories.

* Before we can cost a path, we must cost a point
on a path. That means we must model:

— The path
— The vehicle

— The environment
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Formulation as Optimal Control:
Representing Configurations, C Space Definitions

* A configuration of an object is a
specification of the position of every
point on the object (with respect to a
fixed frame of reference).

* A Configuration Space is the space
(i.e. set) of all configurations of the
object.

* Informally, this is a set of generalized
coordinates which completely

determine the position of every point
on the object.
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 Computational complexity of
search is directly related to:

— the dimension of C Space

— the complexity of the obstacles T
. ey . ,’b — E\.‘
* Attimes, it is valuable to
approximate a robot shape by a L | To view
symmetric one (say, by a circle
SY (say, by ) - ==
in order to reduce the .

dimension of C space.
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Formulation as Optimal Control: Search
Sampling, Discretization, and Relaxation

* In full generality, there is a boo 00 00
function space u(t) to search. EL Coceee oo
= oo L ] ] 0
» Discretization and S e e time
parameterization are two - ll S
options. [oo
H H T o o 0 o C
* For 10 signal levels and 40 time locooaeee
samples, there are 1040 olooei il
alternatives. Bl T time

[
— Not feasible to search at 10 Hz. T f-: ii‘
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Methods for different kind of search problems are very
essential intelligent control of mobile robotics

Some standard approaches in path planning are
represented in the next lecture tomorrow
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Avoiding obstacles is a kind of planning problem.
— Motion prediction.
— Trajectory Evaluation
— Search
Its a real-time problem.
— If the choice is between smart and fast, semi-dumb
robots rule here.
Dynamics matter in many ways.

Cleverness of several kinds are possible.

Alternative courses of action are evaluated based on models of environmental int
eraction.

A constrained optimization formulation applies.
— Obstacles and dynamics are constraints
— Feasible paths evaluated for utility.
A large number of options exist for the representations used in planning models.

— Each has its own issues and advantages from the
perspective of computational complexity.
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