PART II APPLICATIONS

CHAPTER 6

TIME-INDEPENDENT
PERTURBATION THEORY

6.1 NONDEGENERATE PERTURBATION THEORY

6.1.1 General Formulation

Suppose we have solved the (time-independent) Schrodinger equation for some
potential (say, the one-dimensional infinite square well):

H%,) = EJvy, [6.1]

n’

obtaining a complete set of orthonormal eigenfunctions, w,? 3

(W,? l‘ﬁ;%) = Snum [6.2]

and the corresponding eigenvalues ES . Now we perturb the potential slightly (say,
by putting a little bump in the bottom of the well—Figure 6.1). We’d like to find
the new eigenfunctions and eigenvalues:

Hyry = Eybn, [6.3]

but unless we are very lucky, we’re not going to be able to solve the Schrodinger
equation exactly, for this more complicated potential. Perturbation theory is a
systematic procedure for obtaining approximate solutions to the perturbed problem,
by building on the known exact solutions to the unperturbed case.
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V(x) A

FIGURE 6.1: Infinite square well with small perturbation.

To begin with we write the new Hamiltonian as the sum of two terms:
H=H"+\H', [6.4]

where H' is the perturbation (the superscript O always identifies the unperturbed
quantity). For the moment we’ll take A to be a small number; later we’ll crank it
up to 1, and H will be the true Hamiltonian. Next we write Y, and E, as power

series in A:
Y= M AN [6.5]
E,=EY 4+ AE} + \*EF+--- . [6.6]
Here E is the first-order correction to the nth eigenvalue, and ¥ is the first-order

correction to the nth eigenfunction; E2 and /2 are the second-order corrections,
and so on. Plugging Equations 6.5 and 6.6 into Equation 6.3, we have:

lnI, pvm: 12.04.2018

(H + AHO Y + 2y + 2290 + -]
202
= (EQ+ AE! + A2E2 4+ Ol + 2l + A%y + -,

or (collecting like powers of A):

HO%O 4+ A(HOY) + HyO) + 2 HY2 + H'y ) + - -
= EOY0 + LB + ENyO) + A (B2 + Elyl + EFD + -
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To lowest order' (A%) this yields Hy? = E%%9, which is nothing new (Equa-
tion 6.1). To first order (Al),

HOy) + H'yY = EDy, + Epyry. [6.7]
To second order (A2),
HOY2 + H'y) = ESy? + Ely, + Exyy, [6.8]

and so on. (I'm done with A, now—it was just a device to keep track of the
different orders—so crank it up to 1.)

6.1.2 First-Order Theory

Taking the inner product of Equation 6.7 with Wr(,) (that is, multiplying by (1//,(1))*

and integrating),

(W H ) + (WOIH'Y)) = EQ (WY ) + Ep () 19,).
But A is hermitian, so

(W1 HOw) = (HOWQWh) = (EQyy 1) = EQ (e 1¥),

and this cancels the first term on the right. Moreover, w,?w,? ) =1, so?

E} = (O H [y0). (6.9]

This is the fundamental result of first-order perturbation theory; as a practical
matter, it may well be the most important equation in quantum mechanics. It
says that the first-order correction to the energy is the expectation value of the
perturbation, in the unperturbed state.

Example 6.1 The unperturbed wave functions for the infinite square well are

(Equation 2.28)
0200 = [ 2sin (")
B a a /)

I As always (Chapter 2, footnote 25) the uniqueness of power series expansions guarantees that
the coefficients of like powers are equal.

2In this context it doesn’t matter whether we write (1//,9|H d w,? ) or (1//,?|H d lxﬁ,?) (with the extra
vertical bar), because we are using the wave function itself to “label” the state. But the latter notation
is preferable, because it frees us from this specific convention.
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V(x) &

FIGURE 6.2: Constant perturbation over the whole well.

Suppose we perturb the system by simply raising the “floor” of the well a constant
amount Vy (Figure 6.2). Find the first-order correction to the energies.

Solution: In this case H' = V), and the first-order correction to the energy of the
nth state is

E! = (2 Voly?) = Vo 2ly?) = Vo.

The corrected energy levels, then, are E, = ES + Vo; they are simply lifted by the
amount V. Of course! The only surprising thing is that in this case the first-order
theory yields the exact answer. Evidently for a constant perturbation all the higher
corrections vanish.? On the other hand, if the perturbation extends only half-way |
across the well (Figure 6.3), then

2Vy [/ v
El = — sin? (ﬂx> dx = =,
a Jo a 2

I | pvm: 12.04.2018

In this case every energy level is lifted by Vp/2. That’s not the exact result,
presumably, but it does seem reasonable, as a first-order approximation.

Equation 6.9 is the first-order correction to the energy; to find the first-order
correction to the wave function we first rewrite Equation 6.7:

(H° — ESvy)! = —(H' — ELyy?. [6.10]

3Incidentally, nothing here depends on the specific nature of the infinite square well—the same
holds for any potential, when the perturbation is constant. o
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[STIY

FIGURE 6.3: Constant perturbation over half the well.

The right side is a known function, so this amounts to an inhomogeneous differential
equatlon for 1,01 Now, the unperturbed wave functions constitute a complete set,
SO w (like any other function) can be expressed as a linear combination of them:

Vo= eyl [6.11]
m#n

There is no need to include m = n in the sum, for if w satisfies Equation 6.10, so
too does (w + Oll/fo) for any constant «, and we can use this freedom to subtract
off the ¥ term.* If we could determine the coefficients ci.’, we’d be done.

Well, putting Equation 6.11 into Equation 6.10, and using the fact that the w,%
satisfies the unperturbed Schrodinger equation (Equation 6.1), we have

> (E) — EDMyb = —(H' — EDy?.
m#n

Taking the inner product with wlo ,

> (B — EDCS W 1w) = —wlIH WD) + ENu ).
m#n

4Alternatively, a glance at Equation 6.5 reveals that any Wn component in w,! might as well
be pulled out and combined with the first term. In fact, the choice c(”) = 0 ensures that 1, —with 1
as the coefficient of 1//” in Equation 6.5—is normalized (to first order in A): (Y |y = (1#,9]1//,(,)) +
A((w,% W,?) + (w,? [ + A2 )+ -, but the orthonormality of the unperturbed states means that
the first term is 1 and (w,l W,?) = (W,?Il/f,f) =0, as long as w,} has no 1//,? component.
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If [ = n, the left side is zero, and we recover Equation 6.9; if [ # n, we get

(E? — EQc™ = — (P |H |y,

or
0 H’ 0
e — ——_—('”E"})'_ Lﬁ") [6.12]
SO
L WRIHD -
m#n n m

Notice that the denominator is safe (since there is no coefficient with m = n) as
long as the unperturbed energy spectrum is nondegenerate. But if two different
unperturbed states share the same energy, we’re in serious trouble (we divided by
zero to get Equation 6.12); in that case we need degenerate perturbation theory,
which I'll come to in Section 6.2.

That completes first-order perturbation theory: The first-order correction to
the energy, E,ll, is given by Equation 6.9, and the first-order correction to the
wave function, w,}, is given by Equation 6.13. I should warn you that whereas
perturbation theory often yields surprisingly accurate energies (that is, E,? +E ,ll is
quite close to the exact value E,), the wave functions are notoriously poor.

*Problem 6.1 Suppose we put a delta-function bump in the center of the infinite
square well:

H =ad(x —a/2),
where « is a constant.

(a) Find the first-order correction to the allowed energies. Explain why the ener-
gies are not perturbed for even n.

(b) Find the first three nonzero terms in the expansion (Equation 6.13) of the
correction to the ground state, wll.

+Problem 6.2 For the harmonic oscillator [V (x) = (1/2)kx?], the allowed ener-
gies are

E,=(n+1/2)hw, (n=0,1,2,...),

where @ = +/k/m is the classical frequency. Now suppose the spring constant
increases slightly: & — (1 + €)k. (Perhaps we cool the spring, so it becomes less
flexible.)

InI, pvm. 12 .04 2018
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(a) Find the exact new energies (trivial, in this case). Expand your formula as a
power series in €, up to second order.

(b) Now calculate the first-order perturbation in the energy, using Equation 6.9.
What is H’ here? Compare your result with part (a). Hint: It is not neces-

sary—in fact, it is not permitted —to calculate a single integral in doing this
problem.

Problem 6.3 Two identical bosons are placed in an infinite square well
(Equation 2.19). They interact weakly with one another, via the potential

V(x1,x2) = —aVpb(x; — x2)

(where Vj is a constant with the dimensions of energy, and a is the width of
the well).

(a) First, ignoring the interaction between the particles, find the ground state
and the first excited state—both the wave functions and the associated
encrgies.

(b) Use first-order perturbation theory to estimate the effect of the particle-
particle interaction on the energies of the ground state and the first excited
state.

6.1.3 Second-Order Energies

Proceeding as before, we take the inner product of the second order equation
(Equation 6.8) with w,? :

WL H ) + (O H YY) = EQw21w?) + ELwllwly + E2(w0vY).
Again, we exploit the hermiticity of HY:
(Wil HO2) = (HOy21wd) = EQ(wly2),

so the first term on the left cancels the first term on the right. Meanwhile,
w,?w,?) =1, and we are left with a formula for E,%:

El = (WIH 1w — ELylly)). [6.14]

But

(W ln) = Y P lyn) =0,
m#n

lnI, pvm: 12.04.2018
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(because the sum excludes m = n, and all the others are orthogonal), so

01H' 40 01140
B2 = (1) = T P il = 3 el B

m#n m#n ‘

»

|
|
|
|

or, finally,

E2 =

n

(O H YD) 1 |
) [6.15] |
m#n n m

This is the fundamental result of second-order perturbation theory.

We could go on to calculate the second-order correction to the wave func-
tion (w,f), the third-order correction to the energy, and so on, but in practice
Equation 6.15 is ordinarily as far as it is useful to pursue this method.’

xProblem 6.4

(a) Find the second-order correction to the energies (E,%) for the potential
in Problem 6.1. Comment: You can sum the series explicitly, obtaining
—2m (o /7 hn)? for odd n.

(b) Calculate the second-order correction to the ground state energy (Eé) for the
potential in Problem 6.2. Check that your result is consistent with the exact
solution.

* «Problem 6.5 Consider a charged particle in the one-dimensional harmonic oscil-
lator potential. Suppose we turn on a weak electric field (E), so that the potential
energy is shifted by an amount H' = —g Ex.

51n the short-hand notation Vi, = (wng’h/f,?), Apn = E,(,), . E,(,) the first three corrections
to the nth energy are

pl,-pvm: 12.04.2018

2 2
1 2 [Vitm | 3 Vi Vim Vinn [Viom |
En = Vun, E” = E ’ E” = E 7AHZA — Vi § A2 ]
m#n i {,m+#n nm msn iy

The third order correction is given in Landau and Lifschitz, Quantum Mechanics: Non-Relativistic
Theory, 3rd ed., Pergamon, Oxford (1977), page 136; the fourth and fifth orders (together with a
powerlul general technique for obtaining the higher orders) are developed by Nicholas Wheeler,
Higher-Order Spectral Perturbation (unpublished Reed College report, 2000). Illuminating alterna-
tive formulations of time-independent perturbation theory include the Delgarno-Lewis method and
the closely related “logarithmic” perturbation theory (see, for example, T. Imbo and U. Sukhatme,
Am. J. Phys. 52, 140 (1984), for LPT, and H. Mavromatis, Am. J. Phys. 59, 738 (1991), for Delgarno-
Lewis).
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(a) Show that there is no first-order change in the energy levels, and calculate
the second-order correction. Hint: See Problem 3.33.

(b) The Schrodinger equation can be solved directly in this case, by a change of
variables: x’ = x — (¢ E/mw?). Find the exact energies, and show that they
are consistent with the perturbation theory approximation.

6.2 DEGENERATE PERTURBATION THEORY

If the unperturbed states are degenerate—that is, if two (or more) distinct states |
(wg and wlg) share the same energy—then ordinary perturbation theory fails: cf,b) |
(Equation 6.12) and Ea2 (Equation 6.15) blow up (unless, perhaps, the numerator |
vanishes, (wng ! |1/fl9) = 0—a loophole that will be important to us later on). In the
degenerate case, therefore, there is no reason to trust even the first-order correction
to the energy (Equation 6.9), and we must look for some other way to handle the

problem.

6.2.1 Two-Fold Degeneracy

Suppose that
HoY = E%,  H%) = E%;, iy =0, [6.16]
with w,? and wg both normalized. Note that any linear combination of these states,

VO =ayy + BYy, [6.17]
is still an eigenstate of H", with the same eigenvalue E°:
Ho%0 = E%0°. [6.18]

Typically, the perturbation (H') will “break” (or “lift”) the degeneracy: As we
increase A (from O to 1), the common unperturbed energy E° splits into two
(Figure 6.4). Going the other direction, when we turn off the perturbation, the
“upper” state reduces down to one linear combination of wf} and 1/f£, and the
“lower” state reduces to some orthogonal linear combination, but we don’t know a
priori what these ‘““good” linear combinations will be. For this reason we can’t even
calculate the first-order energy (Equation 6.9)—we don’t know what unperturbed
states to use.

For the moment, therefore, let’s just write the “good” unperturbed states in
generic form (Equation 6.17), keeping « and S adjustable. We want to solve the
Schrédinger equation,

o
=
g
N
<
g
o
—
g
=
<
g

Hy = Ey, [6.19]
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FIGURE 6.4: “Lifting” of a degeneracy by a perturbation. |
with H = H° + AH’ and |
E=E'+AE' +M2E2+ ..., y=y+aypl 42292+ [6.20] |
1l

Plugging these into Equation 6.19, and collecting like powers of A (as before) , |
we find |

But H%% = E%y0 (Equation 6.18), so the first terms cancel; at order A! we have

Hy' + H'y® = EO! + ElyO. [6.21]

Taking the inner product with ¥

WA H Y + WO H YO = EOwl vy + EL |y 0).

Inl, pvm:12.04.2018

Because HY is hermitian, the first term on the left cancels the first term on
the right. Putting in Equation 6.17 and exploiting the orthonormality condition
(Equation 6.16), we obtain

(Yol H' |v2) + B H |y)) = aE,

or, more compactly,
aWaq + BWap = ¢ EL, [6.22]

where

Wij = W IH' YY), G, j =a,b). 6.23]
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Similarly, the inner product with wg yields

aWpa + BWop = BE'. [6.24]
Notice that the W’s are (in principle) known —they are just the “matrix ele-
ments” of H’, with respect to the unperturbed wave functions 1//2 and %(,) . Multi-
plying Equation 6.24 by W,;, and using Equation 6.22 to eliminate 8 W,;, we find:
[ Wap Woa — (E' = Waa) (E' = Wip)] = 0. [6.25]

If « is not zero, Equation 6.25 yields an equation for E!:

(EN2 — EY(Waa + Wip) + (Waa Wip — W Wag) = 0. [6.26]

Invoking the quadratic formula, and noting (from Equation 6.23) that Wy, = W,
we conclude that

1
Ey =3 [Waa - Wai £ Waa — Wop)? + 4 W 2 ] . [6.27]

This is the fundamental result of degenerate perturbation theory; the two roots
correspond to the two perturbed energies.

But what if o is zero? In that case B = 1, Equation 6.22 says W,;, = O,
and Equation 6.24 gives E! = Wy,;,. This is actually included in the general result
(Equation 6.27), with the minus sign (the plus sign corresponds to ¢« = 1, g = 0).
What’s more, the answers,

EL =Woo = WH' WD, EL =Wy = (W1H|¥)),

are precisely what we would have obtained using nondegenerate perturbation theory
(Equation 6.9). We have simply been lucky: The states 1/f£ and wg were already
the “good” linear combinations. Obviously, it would be greatly to our advantage
if we could somehow guess the “good” states right from the start—then we could
go ahead and use nondegenerate perturbation theory. As it turns out, we can very
often do this by exploiting the following theorem:

Theorem: Let A be a hermitian operator that commutes with H and H'.
If wg and wg (the degenerate eigenfunctions of H®) are also eigenfunctions
of A, with distinct eigenvalues,

AV = uyy, Ay =vy), and u# v,

Inl, pvm:.12.04.2018
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then W,;, = 0 (and hence 1//2 and W;? are the “good” states to use in pertur-
bation theory).

Proof: By assumption, [A, H'] = 0, so

WA, H' W) =0
= (WIIAH'YY) — (Yo | H Ayy)
= (AYQH" YY) — (Yo H vip)
= (= V(Y H'YP) = (u — v) Wy,

But u #v,s0 Wy, =0. QED

Moral: If you’re faced with degenerate states, look around for some hermitian
operator A that commutes with H° and H’; pick as your unperturbed states ones
that are simultaneously eigenfunctions of H® and A. Then use ordinary first-order
perturbation theory. If you can’t find such an operator, you’ll have to resort to
Equation 6.27, but in practice this is seldom necessary.

Problem 6.6 Let the two “good” unperturbed states be
Vi =aryp + By,

where o and S+ are determined (up to normalization) by Equation 6.22 (or Equa-
tion 6.24). Show explicitly that

(a) w(i are orthogonal (¥ |y %) = 0);

(b) (Y3 IH'|Y2) =0;
(c) (vLIH'|¥) = EL, with EL given by Equation 6.27.

Problem 6.7 Consider a particle of mass m that is free to move in a one-dimen-
sional region of length L that closes on itself (for instance, a bead that slides
frictionlessly on a circular wire of circumference L, as in Problem 2.46).

(a) Show that the stationary states can be written in the form

Y0 = %ez’”""/% (—Lj2<x <L/2),

InI, pvm:12.04.2018
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where n =0, =1, £2, ..., and the allowed energies are

2 (nnh)2
En = — - & .
m L
Notice that—with the exception of the ground state (n = 0)—these are all
doubly degenerate.

(b) Now suppose we introduce the perturbation
H}' - _Voe—xz/az‘

where a < L. (This puts a little “dimple” in the potential at x = 0, as though
we bent the wire slightly to make a “trap.”) Find the first-order correction to
Ey,, using Equation 6.27. Hint: To evaluate the integrals, exploit the fact that
a < L to extend the limits from T L/2 to T oo; after all, H' is essentially
zero outside —a < x < a.

(c) What are the “good” linear combinations of v, and y_,, for this problem?
Show that with these states you get the first-order correction using
Equation 6.9.

(d) Find a hermitian operator A that fits the requirements of the theorem, and
show that the simultancous eigenstates of H% and A are precisely the ones
you used in (c).

6.2.2 Higher-Order Degeneracy

In the previous section I assumed the degeneracy was two-fold, but it is easy to
see how the method generalizes. Rewrite Equations 6.22 and 6.24 in matrix form:

Waa  Wap 104 1 (¢

(Wba Wbb) ( ﬂ) —E ( ﬂ) . 16.25]
Evidently the E!’s are nothing but the eigenvalues of the W-matrix; Equation 6.26
is the characteristic equation for this matrix, and the “good” linear combinations

of the unperturbed states are the eigenvectors of W.
In the case of n-fold degeneracy, we look for the eigenvalues of the n x n

matrix

Wij = (W [H'[y7)). [6.29]

In the language of linear algebra, finding the “good” unperturbed wave functions
amounts to constructing a basis in the degenerate subspace that diagonalizes the

o
pa
Q
N
<t
c.
o
-
g
>
Q
g
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matrix W. Once again, if you can think of an operator A that commutes with g’
and use the simultaneous eigenfunctions of A and H 0, then the W matrix wiJ)
automatically be diagonal, and you won’t have to fuss with solving the charac-
teristic equation.® (If you’re nervous about my casual generalization from 2-folq : |
degeneracy to n-fold degeneracy, work Problem 6.10.) )

Example 6.2 Consider the three-dimensional infinite cubical well (Problem 4.2):

0, f0<x<a0<y<a, and0 <z <a,
Vix,y,2) = . g [6.30]
oo otherwise. |

The stationary states are
3/2
2 L RXTT N . (AyTT N\ . (NT
w,?,n Xy, )= (—) sin <—x—x) sin <—y—y> sin (—Z—z> . [6.31]
e a a a a
where ny, 1y, and n, are positive integers. The corresponding allowed energies are

th

b2
Effx,,‘,h = a2 (n% -+ ni + n%). [6.32]

Notice that the ground state (v111) is nondegenerate; its energy is

252
weh
E) =3 . 6.33
0 2ma? [ ]
But the first excited state is (triply) degenerate:
m|
Va =V112, Ve = Y121, and Y = Youu, [6.34] §
3
N
all share the same energy “}
242 g
g0 =37 " [6.35) 3
L= " a2’ : pe!
Now let’s introduce the perturbation
i = Vo, f0<x<a/2and0 <y <a/2; (6.36]

0, otherwise.

6Degenerate perturbation theory amounts to diagonalization of the degenerate part of the Hamil-
tonian. The diagonalization of matrices (and simultaneous diagonalizability of commuting matrices) is
discussed in the Appendix (Section A.5).
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FIGURE 6.5: The perturbation increases the potential by an amount Vj in the shaded
sector.

This raises the potential by an amount Vj in one quarter of the box (see Figure 6.5).
The first-order correction to the ground state energy is given by Equation 6.9:

E}) = (11| H'|Y¥111)

2 3 aj2 a/2 a
= (—) Vo/ sin? (Zx) dx/ sin’ (zy) dy/ sin’ (zz> dz
a 0 a 0 a 0 a

1
= -V, 6.37
70 [6.37]

which is pretty much what we would expect.

For the first excited state we need the full machinery of degenerate perturbation
theory. The first step is to construct the matrix W. The diagonal elements are the
same as for the ground state (except that the argument of one of the sines is
doubled); you can check for yourself that

1
Waa = Wbb = ch e ZVO-

The off-diagonal elements are more interesting:

) 3 aj2
Wap = (—) VO/ sin? (Zx) dx
a 0 a
az ; . (2w “a . (2 LT
X s1n<—y>s1n —y | dy sin { —z s1n<—z> dz.
0 a a 0 a a

Inl, pvm:.12.04.2018
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But the z integral is zero (as it will be also for W,.), so
Wap = Wye = 0.
Finally,

AN LG 2
Wy = <—> VO/ sin (zx) sin (—nx> dx
a 0 a a |

a2 a 16
X / sin (_er) sin (zy) dy/ sin’ <£z> dz = —W.
0 a a 0 a 9
Thus
Vo 1 0 O
W= o 0 1 « [6.38]
0 « 1

where « = (8/37)% ~ 0.7205.
The characteristic equation for W (or rather, for 4W/ Vj, which is easier to
work with) is

(1—w)? —«%(1 —w) =0,
and the eigenvalues are
wr =1, wy=14x=1705 w3=1-—«x~0.2795.
To first order in A, then,
EY +AVy/4,
Ei(v) = § EY+0(1 + 1) Vo /4, [6.39]
EY +A(1 — 1) Vo /4,

where E? is the (common) unperturbed energy (Equation 6.35). The perturbation
lifts the degeneracy, splitting E (1) into three distinct energy levels (see Figure 6.6).
Notice that if we had naively applied nondegenerate perturbation theory to this
problem, we would have concluded that the first-order correction (Equation 6.9) is
the same for all three states, and equal to Vy/4—which is actually correct only for
the middle state.

Meanwhile, the “good” unperturbed states are linear combinations of the form

Inl, pvm: 12.04.2018

O = av, + By + v i, [6.40]

where the coefficients («, 8, and y) form the eigenvectors of the matrix W:

1 0 0 o o
0 1 « Bl=w{pB
0 « 1 4 14
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A

FIGURE 6.6: Lifting of the degeneracy in Example 6.2 (Equation 6.39).

Forw=1wegeta=1,8=y=0,forw=1Tkwegeta=0,p==Ly=
1/4/2. (I normalized them as I went along.) Thus the “good” states are’

Va,
v = 3 (Y + v /V2, [6.41]
Wy — V) /V2.

Problem 6.8 Suppose we perturb the infinite cubical well (Equation 6.30) by
putting a delta function “bump” at the point (a/4, a/2, 3a/4):

H =d*Vyd(x —a/8)8(y — a/2)8(z — 3a/4).

Find the first-order corrections to the energy of the ground state and the (triply
degenerate) first excited states.

TWe might have guessed this result right from the start by noting that the operator Py, which
interchanges x and y, commutes with H'. Its eigenvalues are +1 (for functions that are even under the
interchange), and —1 (for functions that are odd). In this case V¥, is already even, (3 + ) is even,
and (¥, — W) is odd. This is not quite conclusive, since any linear combination of the even states
would still be even. But if we also use the operator Q, which takes z to a — z, and note that v, is
an eigenfunction with eigenvalue —1, whereas the other two are eigenfunctions with eigenvalue +1,
the ambiguity is resolved. Here the operators Pyy and Q together play the role of A in the theorem of
Section 6.2.1.

o
-
g
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g
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«Problem 6.9 Consider a quantum system with just three linearly independent
states. Suppose the Hamiltonian, in matrix form, is

1—-¢) 0 O
H=YV, 0 1 ¢
0 € 2

where Vj is a constant, and ¢ is some small number (¢ < 1).

(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian
(e = 0).

(b) Solve for the exact eigenvalues of H. Expand each of them as a power series
in €, up to second order.

(c) Use first- and second-order nondegenerate perturbation theory to find the
approximate eigenvalue for the state that grows out of the nondegenerate
eigenvector of H". Compare the exact result, from (a).

(d) Use degenerate perturbation theory to find the first-order correction to the
two initially degenerate eigenvalues. Compare the exact results.

Problem 6.10 In the text I asserted that the first-order corrections to an n-fold
degenerate energy are the eigenvalues of the W matrix, and I justified this claim as
the “natural” generalization of the case n = 2. Prove it, by reproducing the steps
in Section 6.2.1, starting with

n
0 § : 0
1,” = a]w‘]
j=1

(generalizing Equation 6.17), and ending by showing that the analog to
Equation 6.22 can be interpreted as the eigenvalue equation for the matrix W.

6.3 THE FINE STRUCTURE OF HYDROGEN

In our study of the hydrogen atom (Section 4.2) we took the Hamiltonian to be

B _, &1

H=—-——V°—
2m dreg r

[6.42]

(electron kinetic energy plus coulombic potential energy). But this is not quite
the whole story. We have already learned how to correct for the motion of the
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