

Lecture 6: Laminar premixed flames

(related : Warnatz, Ch. 3, 5 & 8)

Heikki Kahila Aalto University School of Engineering Combustion Course, Spring 2018

1st April 2019, Otaniemi heikki.kahila@aal<u>to.fi</u>

Me?

- M.Sc. at Aalto : engineering physics & mathematics
- Ph.D. graduation 2019 : supervisor Prof. Vuorinen
- Fields of research and interests:
 - Fluid dynamics
 - CFD
 - Combustion physics
 - Aerospace engineering
 - Numerical modeling

Upcoming Sessions

- Lecture 6: Laminar premixed flames
- Lecture 7: Details of laminar premixed flames
- Exercise 4 on theory and practice of laminar flame computations with complex chemistry
- My Course web interface for discussions and questions: https://mycourses.aalto.fi/

Flame – Where *fuel* and *oxygen* meet *heat* and *radicals*

Flames in diesel engines

Wehrfritz et al., Comb. Flame 2016.

Aalto University School of Engineering Bardi et al. 2012 Atomization and Sprays 22(10):807-842

https://s-media-cache-ak0.pinimg.com/originals/73/e2/84/73e2842d87505c77cffc8ad10f9dbc41.jpg

NASA: http://www.spd.org/2011/05/texas-monthly-dan-winters-disc.php

https://commons.wikimedia.org/wiki/File:USAF_EOD_explosion.jpg

Some names in combustion science

Lavosier (1743-1794)

Bunsen (1811-1899)

Le Chatelier (1850-1936)

Chapman (1869-1958)

Jouguet (1871-1943)

Zel'dovich (1914-1987)

Landau (1908-1968)

Damköhler (1908-1944)

What is a flame?

- Understanding flames needs a definition for combustion
- Combustion:
 - a process of heat release in exothermal reactions
 - Chemical source
 - Thermonuclear source (fission, fusion)
 - Includes mass and heat transfer
 - Fuel can be solid, liquid or gaseous
 - solid rocket propellants
 - liquid droplets in diesel engines
 - gaseous combustion in burners and Otto engines

What is a flame?

- Typical features of a flame:
 - Visible
 - Colorful: red, yellow, blue, green (case dependent)
 - Appears as a propagating "combustion wave front"
 - Very thin
 - In certain cases (combustion) self-sustainable \rightarrow hazardous
 - Includes often turbulent structures
- Flame is often something we see :
 - Excited specie are formed which emit light
 - Colors seem to depend on fuel and/or final species
 - Colors seem to depend on how much oxygen we have available
 - Unburned fuel and solid particles radiate strongly \rightarrow bright flame in a fire

Definition of a flame

Typically a narrow region in space at which combustion takes place in it's characteristic form

Warnatz Table 1.2

Warnatz Table 1.2

Warnatz Table 1.2

Warnatz Table 1.2

Non-premixed flames

- Fuel and oxidizer separated \rightarrow physical mixing and molecular diffusion needed
- Rate of combustion is governed by the rate of molecular diffusion (a.k.a diffusion flames)
- Fuel rich combustion \rightarrow soot and particles
- Typically bright yellowish flames
 - High luminosity origins from soot radiation (black body)
 - BUT, non-premixed flame can be invisible (H2 combustion)
- Hot combustion temperatures \rightarrow typically high Nox
- Non-premixed flames applied when safety and reliability are obligatory (aircraft engines, gas turbines, industrial furnaces etc.)

Premixed (PM) flames

- Reactants are perfectly premixed prior to ignition
 - \rightarrow all components necessary for the reaction are present in the fuel
 - \rightarrow to initiate reaction one has only to ignite the mixture
 - \rightarrow complete combustion
- Formation of a propagation front
 - Front separates unburned from fully burned
 - self-sustaining
- Targeted to lean conditions
 - \rightarrow complete combustion \rightarrow "no" soot \rightarrow no bright yellowish flame
 - \rightarrow Visibility depends on fuel: e.g. blue glow of the premixed bunsen flame originates from excited states of CH and C₂ (intermediate species in oxidization)
 - \rightarrow Lower combustion temperatures \rightarrow lower Nox
- Applications : Gasoline and natural gas engines, modern gas turbines, explosions

From ignition to premixed flame

- Auto-ignition within flammability limits
 - $T > T_{crit}$ (temperature)
 - $\lambda_{low} < \lambda < \lambda_{high}$ (air-fuel equivalence ratio)
 - T_{crit} is fuel, mixture and pressure dependent
 - reaction rate ~ exp(T) (Try out with Cantera)
 - Thermal stratification \rightarrow non-uniform ignition
- External energy source
 - Light a gas stove by a matchstick
 - Electric spark : Gasoline engines and gas grill at summer cottage

From ignition to premixed flame

https://www.youtube.com/watch?v=IwjiVdk_msA

https://www.youtube.com/watch?v=xg3Ri1-1rCE

Laminar premixed flames

• Why to study laminar flames?

"The test of all knowledge is experiment. Experiment is the sole judge of scientific "truth". (Feynman)

The most detailed experiments are in laminar conditions

- Observations from laminar flames give the basis for the principles in combustion physics
- Often theoretical approaches, derived for laminar flames, extend to turbulent cases
- Chemical mechanism validation
- Turbulent flame can be interpreted to assemble from many pieces of laminar flames (flamelets)

Lecture exercise

 Sketch profiles along the line for T, ρ, velocity, O2, fuel, CH

https://upload.wikimedia.org/wikipedia/commons/e/e3/Blow_ Torch_(3257353199).jpg

• Stoichiometric hydrogen flame

• Stoichiometric hydrogen flame

Aalto University School of Engineering

• Stoichiometric hydrogen flame

Stoichiometric hydrogen flame

• Heat release in stoichiometric hydrogen flame

Example of *methane* flame structure and terminology

- Important notes:
 - PM Flame has a finite thickness
 - Mass and heat diffusion are very important
 - Radicals and intermediate species can diffuse and initiate otherwise non-active reactions
 - Reactions take place throughout the flame thickness
 - Max heat release takes place at low T

Three levels of detail

- Flame sheet
 - Discontinuity
 - Conservation of mass and energy
 - Rankine-Hugoniot
 - Analytical analysis + combustion models
- <u>Reaction sheet level</u>
 - Includes the preheat zone
 - Finite thickness
 - Discontinuous reaction sheet
 - Analytical analysis + combustion models
- <u>Complete structure</u>
 - Fundamental understanding
 - Combustion models

Laminar flame propagation

- Propagating flame front is an intrinsic feature of PM flames
- What influences to the propagation velocity ?
- How can we estimate this <u>"laminar flame speed" ?</u>

https://www.youtube.com/watch?v=IwjiVdk_msA

https://upload.wikimedia.org/wikipedia/commons/e/e3/Blow_ Torch_(3257353199).jpg

Laminar flame propagation

Williams. Combustion Theory Fig. 5.2

Kurtulus et al. : Characterisation of Lean Premixed Laminar Flames in High Pressure using PIV.

Upcoming Session

- Deflagration vs. detonation
- Reacting conservation equations
- Expressions for laminar flame speed
- Turbulent flame speed correlations
- Expressions for flame thickness
- Details of mass diffusion
- Sensitivity of flames to ambient conditions

