
Course recap
4.4.2018
Santeri Paavolainen

Caveat emptor

- This set of slides covers only portion of the course material
- Most important, but not all
- Focusing on refreshing the topics, not in details

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

2

What does a software architect do?

- In a larger company
- Draw fancy pictures
- Talk to lots of stakeholders
- Attend lots of meetings
- Talk to other engineers
- Draw lots of stuff on whiteboard

- In a start-up
- Less talking and less meetings
- Less people to catch your mistakes

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

4

ß Communication
ß Communication
ß Communication
ß Communication
ß Communication

ß Communicate with
actual customers

Trends in computing

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

5

Sources:Joi Ito (SAGE, CC BY 2.0), Arnold Reinhold (IBM
1401, CC BY-SA 3.0), Ben Franske (IBM S/360, CC BY 2.5),
Veradrive (IBM PC/XT, CC BY 4.0), Senado Feredal
(Smartphone, CC BY 2.0), Google (Google data center)

Genesis Custom built Product Commodity

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

6

Then Now

Scarcity Abundance

Few users World
population

Little data Big data

What is a
microservice?

Microservices as an architectural
design model
- Loosely coupled architectures

- Parameterized configuration and service discovery
- Independent component lifecycles

- Fine grained component separation
- Identifying domains of logical responsibilities

- Identifying and managing state
- Preference to purely stateless or purely stateful components

- This is a high-level technology design viewpoint

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

8

Microservices as implementation
patterns
- “Architecture astronauts” often overlook practical but important

concerns
- Logging, tracing and monitoring
- Edge cases such as cold restarts, bad nodes
- Deployments and resource scaling

- Operational and implementation patterns
- Logging sidecars, external services, distributed tracing
- Blue/green deployments, gradual rollouts
- Testing live systems

- This is a practical / operational viewpoint

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

9

Microservices as organizational
structure
- Conway’s law

- "organizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these
organizations.”

- Define system by organization, or organize by system design
- Two-pizza rule for team size (Bezos)

- Minimize friction on internal communication
- Formalize external interfaces

- Service contracts, SLAs à DevOps

- This is a management viewpoint

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

10

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

11

OperationalArchitectural

Organizational

Microservices are not systems

- Systems comprise of multiple services
- This was true even decades ago, nothing new about microservices

- Often multi-faceted
- Serving different types of users, different workloads
- Overall goal is to support an organization’s goals (business,

academic, ..)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

12

Why
microservices?

Pros of microservices

- Helps managing large development organizations
- Clearer responsibilities, divisions of labor
- Easier to scale at team and individual level

- Increases development velocity
- Independent decisions in teams, formal dependencies
- Intra-team communications more focused

- “Product” viewpoint (vs. “project”)
- Easier to focus on customer needs than managing schedules

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

14

Cons of microservices
- Increases development overhead

- Repetition of code, configuration etc.
- In practice, requires investment in automation (CI/CD)
- Debugging distributed systems notoriously difficult

- Changes usage patterns and increases operational risks
- Distributed services put more load on the network (vs. local IPC)
- Authority on infrastructure open to misuse and accidents
- Security harder to monitor and enforce

- Dependencies between services
- Configuration management and versioning require effort
- Increased number of services leads to lower availability, higher variance of

many service level metrics

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

15

Containers:
Docker and
Kubernetes

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

17

container

virtual machine

guest os

hypervisor

hardware

vm

hardware

process

process

1. Hardware
isolation

2. Virtual machine
isolation

3. Process isolation
4. Container

isolation

1.

2.

3.

4.

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

18

Service

Deployment

Replica Set

Container

Pod

Request

Summary

- Docker is a container build and execution framework
- Manages networking, volume mounts, registry push/pull, persistent

container state, etc.
- Docker’s boundary is a single container

- No service orchestration in docker itself (yes in docker compose,
but that’s a separate solution)

- Kubernetes widely used for container orchestration
- Manages pods, which can consist of multiple containers, and

services which are exposed network ports and/or addresses

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

19

Microservices:
Architecture

Service Orientation: The Idea

- Define services by a logical boundaries
- Each service responsible for anything “inside”
- Interaction via well-defined interfaces (APIs or other)

- “Separation of concerns”

- How to define a service boundary?

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

21

Splitting a monolith

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

22

Load balancer

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

Shard

Load balancer

Shard Shard

Load balancer

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

Shard

Load balancer

Shard Shard

Load balancer

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

UI

Customer
logic

Billing
logic

Affiliate
logic

Data access

Shard

Load balancer

Shard Shard

UI

Database Database

Customer
logic

Data
access

API

Billing
logic

API

Affiliate
logic

API

Data
access

Load balancer

LB LB LB

Team Flash

Team Thunder

Team Rumble

Team Gastrointestinal
Problems

Service description: Interface

- How does a microservice interact with another?
- Service interface description
- May be anything that allows control and data transfer

- REST is a practical default

- Formal interface definitions: Interface Definition Languages
- (WSDL and SOAP)
- OpenAPI and Swagger for REST
- gRPC and Thrift inherently IDL protocols

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

24

Customer API
specification

Affiliate API
specification

Billing API
specification

Service description: SLAs

- Interfaces do not tell about non-functional requirements
- Availability
- Reliability
- Response time (distribution)
- Security guarantees
- Interface stability (obsolescence)

- These are often highly situational

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

26

Team Flash

Team Thunder

Team Rumble

Team Gastrointestinal
Problems

1M users
100k daily

99.9%
availability

The Big Kahuna

Hi Thunder!
We need

99.95% and
800 r/s peak

Hi old farts!
We need

99.5% and
30 req/s

sustained

Yep Rumble,
can do but it’ll
cost you 200
donuts/day

Pssst Flash, what
can you do for 500

donuts/year?

Either 99% at 50ms
or 99.99% at 5s?

grumble grumble
Only if you can submit

requests using JCL

Network
communication

Application protocols

- Almost all service interactions occur at application level protocols
- HTTP and HTTPS primary (QUIC in the future?)

- HTTP(S) used to transport other application level protocols
- SOAP, REST, …

- gRPC, Thrift, AQMP, etc.
- Operate on top of TCP

- Sometime work around TCP issues (such as slow start, with Keep-Alive
connections)

- TCP is connection-oriented: connect à transmit à close
- Usually client-server, e.g. specific listener address and port

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

29

Communication models
- Synchronous response

- Request-response pattern
- Reply expected immediately (after processing)

- Asynchronous response
- Processing started by request
- Immediate response provides a handle or identifier
- Response methods

- Polling by client (known endpoint or part of response)
- Callback from server (agreed-upon endpoint or part of request)
- Response publish (message queue, pubsub, blackboard, …)

- Message-passing
- Request itself asynchronous

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

30

Failures

Failures in distributed systems

- Rule of thumb:
- Everything fails all the time (randomly, when least expected)

- See Network is reliable paper (hint: it is not)

- Microservice architectures fail more
- More components, more computers, more connections, more

changes, more of everything
- Risks of correlated failures can be either higher or lower than for

monolithic systems
- See first lecture slide how number of components affects reliability

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

32

https://queue.acm.org/detail.cfm?id=2655736

Brewer’s theorem’s consequences

- Hard partitions are generally rare
- Most of the time it is possible to achieve both consistency and

availability
- However, partitions do still occur

- Then you need to choose between availability and consistency
- “Eventually consistent” mechanisms choose availability

- In large enough systems, something fails all the time
- Consideration in services — which is critical?

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

33

Single-node
patterns

Sidecar examples

- Adding HTTPS to legacy
application

- Updating configuration
- Access control

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

35

HTTPS
proxy

Legacy
HTTP

service

https://… http://…

Access
control
proxy

Service
request w/ token

403 Forbidden

request
Service

container
Config

manager

Configuration source

Shared filesystem

check for update

update
config fileread config

signal reload

Ambassador examples

- Hiding 500s
- Service brokering
- Local caching

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

36

Service
container

Ambassador
container

External
service

request

500 Error

retry request

200 OK

Service
container

Broker 1 or 2
based on

query

External
service 1

External
service 2

requests for 2*

requests for 1*

Service
container Cache External

service

Adapter

- Sidecar pattern when
someone else needs a
specific interface

- Common interface used across
the system such as logging,
metrics, service health etc.

- Not “core” service but
supporting interfaces

- Both push and pull interfaces

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

37

Service
container Adapter External

consumer

Service
container Adapter External

consumer

common interface

Extending to
multiple nodes

Load-balanced services

- Multiple identical stateless
services

- Send requests according to
some policy (RR, random,
LRU, …)

- Service is replicated,
functionally identical portions
duplicated

Load
balancer

Service
replica 1

Service
replica 2

Service
replica N

Req#1 Req#2 Req#3

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

39

Load-balanced services

- Multiple identical stateful
services

- Identify a session key
- Send request to backend

identified by the session key
- If not identified, use some

policy (like before)
- Problems

- Hot replica
- Key redistribution

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

40

Load
balancer

Service
replica 1

Service
replica 2

Service
replica N

Req#1 Req#2 Req#3

Session

Sharding

- Distribute requests to
specific backend

- Use sharding function
mapping a sharding key to
shard index

- Non-sequential keys hashed
- Consistent sharding functions

(why modulo is not?)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

41

Shard 1 Shard 2 Shard N

Service
frontend

Customers
000000-099999

Customers
100000-199999

Customers
N00000-N99999

hash(key) % N
0

hash(key) % N
1

hash(key) % N
N-1

Service brokering

API gateway

Auth service Feed service Tile server

/auth
/auth/*

/feed
/feed/*

/static/images/tile/*

Asynchronous
processing

“Workflow system”

- System that orchestrates a flow of work
- Potentially across different systems (e.g. always in microservice

architectures)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

44

Image: AWS

Batch vs. stream processing

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

47

Source: AWS

Examples:
- Log ingestion
- Device sensors

- User interactions (game,
website, mobile app, …)

- News / social media feeds

Messaging

- Messaging is exchange of asynchronous messages via a 3rd

party
- Message queues: unordered / FIFOs, single message (1-1)
- Publish/Subscribe (PubSub): Message fanout 1-N
- Message bus: PubSub, but goes much into ESBs …
- Specialized systems (Celery – task queue, e.g. asynchronous RPC,

message priorities, …)
- Lots of OSS and commercial solutions

- AWS SQS (FIFO) & SNS (PubSub), Apache ActiveMQ, RabbitMQ,
… (lots and lots), also can use databases

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

48

Why asynchronous models?

- Splitting a big task to smaller, sequential pieces
- Easier to develop and debug each in isolation
- Natural for microservice architectures to create service boundaries

- Less prone to failures, easier to recover
- Management can be made HA and resilient
- State transitions ~idempotent à no (big) problem re-running

- Less sensitive to processing delays and load variations
- Not in path of synchronous processing (order fulfilment ~ days!)
- Buffering, capacity scaling

- Many business processes are workflow processes!

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

49

Logging, metrics
and tracing

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

51

Instance

Application Container

Application server

Application

Logging
Framework

Library

Library

Sidecar Container

Log
Forwarder

Log System

application logs

container logs

instance logs (dockerd, system, …)

querie
s

Long-term
retention

Dashboards

Images: Elastic & NBSoftSolutions

https://www.elastic.co/guide/en/kibana/6.7/dashboard.html
https://nbsoftsolutions.com/blog/monitoring-windows-system-metrics-with-grafana

Images: zipkin.io & AWS

https://zipkin.io/
https://cloudacademy.com/blog/aws-x-ray-distributed-tracing-system/

Summary

- Which one you prefer:
- System you KNOW is hosed?
- System which APPEARS to work?

- Logging, metrics and tracing are tools for the FIRST one
- Identifying the problem
- Locating the problem
- Understanding the problem
- After fix is rolled out, verifying that problem has gone away

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

54

metrics
logging (tracing)

logging
all

Service Discovery

Independent components

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

56

Load
Balancer

Replica 1

Replica 2

Replica 3

Master

Read
Replica 1

Read
Replica 1

?
?

?

?

?
?

Service injection

- Extremely static case of
discovery

- Everything is known at
deployment

- IP addresses
- Number of nodes in cluster

- Methods
- Configuration templates
- Environmental variables

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

57

subnet: 10.0.0.0/24
lb_ips: [10.0.0.1, 10.0.0.0.2]
fe_count: 3
db_rr_count: 2

templates
rules

enginestate

nginx-lb-1.conf

fe_addresses =
[10.0.0.3, 10.0.0.4,
10.0.0.5]
lb_peer = 10.0.0.2

nginx-lb-2.conf

fe_addresses =
[10.0.0.3, 10.0.0.4,
10.0.0.5]
lb_peer = 10.0.0.1

/etc/network/
interfaces

auto eth0
face eth0 init
static address
10.0.0.1 netmask
255.255.255.0 …

/etc/network/
interfaces

auto eth0
face eth0 init
static address
10.0.0.2 netmask
255.255.255.0 …

global configuration

lb-1 lb-2

fe-1 fe-2 fe-3

master read
replica 2

read
replica 1

10.0.0.1 10.0.0.2

10.0.0.3 10.0.0.4 10.0.0.5

10.0.0.6 10.0.0.7 10.0.0.8

application.conf

db_master = 10.0.0.6
db_read_replicas =
10.0.0.7,10.0.0.8

Host-based discovery

- Idea: Distributed services over network
è DNS built-in to almost everywhere è why not use it?

- Host-based discovery
- /etc/hosts (static = old, since dynamic mounts or rewriting)
- Local DNS resolver
- Cluster DNS
- Integrated service discovery service with DNS

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

58

More service discovery patterns

- Host-based via DNS easy to use
- Might require client-side understanding (multiple records)
- Difficult to generalize to other uses (queue names etc.)
- (Ports not so much a problem with private IPs and port remapping)

è Generalized directory services
- etcd, ZooKeeper, Consul ...
- Requires client-side support: external configurator (sidecar?) or

internal to application (integrate service client)
- Users have complete control over key and value semantics

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

59

Directory Service (etcd,
zookeeper, consul, …)

Service 1. update
/svc/addr/1
= 10.2.1.6

Client

0. register watch
/svc/addr 2. notify update

/svc/addr

Configuration
Sidecar

0. register watch
/svc/addr

2. notify update
/svc/addr

3. update internal
address list

Client

Config

3. update
config

4. restart
client

5. use
updated
config

Failures

Overview

- Already established that in a distributed system
- Services may fail at any time
- Network may fail at any time
- Services may delay response arbitrarily
- Network may hang up arbitrarily
- Services may produce unexpected responses for any request
- (Client may fail at any time too, but let’s ignore that for now)

- What can we do about that?

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

62

Failure types
- Failure types (roughly)

- Server dies (application server
crashes, server crashes)

- Request fails (connection terminated,
500 Server Error, incorrect response,
corrupted response)

- Request hangs (response not
completed)

- May occur in combination
- Server dies à may look as a hang to

client
- Server dies à may result in 500 from

proxy or a connection termination
- Request hangs à eventual error

response from timeout in proxy

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

63

Transparent retry
- Incorporate retry logic at

intermediary
- LB, reverse proxy, etc.

- Most useful for transients
- Really only for idempotent requests

- GET or HEAD
- Timeouts

- N tries with timeout T for each, max
N * T seconds (N = 3, T = 10 à 30
seconds before definite failure)

- Also useful for backoffs (429, 503)
- Does not help if clients aggressive

- RELOAD if >5s second page load

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

64

Client BEFE

try 1

try 2

try 3

Note: BE may
be multiple

replicas, with
different

requests going
to different

nodes

request

good response

Client-side retry

- Return failures immediately to
client

- Timeouts controlled by client
- Client decides what to do

- Retry?
- Use other service?
- Use cached value?
- Use cached value, but call

asynchronously and update if
successful?

- Report error?

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

65

SVCClient

try 1

try 2

try 3

good response

SVCClient

1. failed request

2. asynchronous
request

5. good reply
Local
cache

3. fetch
cached
value

4. show
cached
value

6. update
value

Fallbacks
- Aspect of resilient computing

- Adaptive activities and responses
based on environmental conditions

- Use cached or other data
- “Old value” often better than “no

value”
- Broader data may be applicable too

- Per-user recommendations à general
recommendations

- Finland feed à Europe aggregate feed
- Applicable for all

- Services using other services,
transparent proxies and client-side
logic

Client Narrow
BEFE

2. failing request1. client request

Cache

Broad
BE

3a. use
cached
value

3b. use
other data

4. response

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

66

Circuit breakers (software fuses)

- Distributed system = many parties
- Share information about failures
- Clients can react to failing services before using them

- Circuit breaker
- Trip on failures
- Use fallback if tripped
- Some fuse reset policy

- Hystrix! (originating from Netflix, where else?)
- Circuit breaker design pattern

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

67

Service
Configuration

Previously …

- Discussed service discovery
- How to “plumb” the pipes between services
- Injection, host-based discovery, directory services

- Discovery is just one aspect of
service configuration

- E.g. not only about plumbing
- Settings, secrets, …

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

69

Service
Configuration

Service
Discovery

Techniques pretty similar to discovery

- Static configuration
- System deployment
- Service start

- Dynamic configuration
- Integrated into service
- Sidecar managed

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

70

Configuration Service

Configuration

Client

0a. initial configuration
0b. register 2. update

Configuration
Sidecar

0a. initial configuration
0b. register

2. update

3. update state

Client

Config

3. update
config

4. restart

5. use
updated
config

Dynamic configuration

- Facebook and Google extreme examples
- Feature flags dynamically enable/disable functionality

if (feature_x_enabled) { … } else { … }

- Feature flags are dynamically configurable (via some directory)
- Multivariate flags: on/off based on complex criteria

- Potentially change large portions of service functionality
without code changes or redeployment

- We’ll come back to “dark launches” later on deployments
- (Not without its own problems)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

71

Secrets and sensitive information

- What are ”secrets”?
- Cloud infrastructure and 3rd party service access keys
- Keys used for HMAC and encryption (signed session token)
- Passphrases for asymmetric cryptography private keys (e.g. TLS)

- For any other kind of keystore (Java, Bitcoin, …)

- On-disk encryption keys
- “Secrets” are runtime information

- Should never go into actual service code or configuration
- Injected only when service started, or pulled in as needed

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

72

Deployments

Scaling

- Statically resourced systems applicable if
- Load pattern is predictable and not highly variable

- Conversely many real-world problems don’t fit this
- Daily variation (night / day)
- Weekly variation (weekday /

weekend)
- Spikes and dips (black Friday,

Christmas)
- Long-term patterns (increased

popularity, viral effects)
- è Unused capacity è $£€ lost

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

74

Time
De

m
an

d

Horizontal and vertical scaling

- Vertical scaling (going up!): bigger box
- Increase instance size, increase disk allocation, …

- Horizontal scaling (going sideways!): more boxes
- Add 1 box … add 1 box … add 1 box … repeat

- Of course it is possible to use both simultaneously

- ”Blast radius” describes area of impact of an failure
- “Larger instance” (vertical scaling) >> Lots of boxes
- SPOF database’s blast radius is easily the whole system

1-out-of-N stateful customer service affects 1/N customers

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

75

“Systems spend more
of their life in operation

than in development”
- M.T. Nygard, Release It!

General solutions

- Stop-and-go deployment
- Stop the world
- Update
- Start the world

- Service degradation
- Fallback services
- Read-only mode

- Non-stop deployments
- Blue-green deployments
- Canaries etc.

- Minimizing critical intervals
- Database techniques

- Minimizing affected users
- E.g. avoiding big bugs
- Scientist
- Multivariate feature flags

- Later: Destructive changes

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

77

Stop-and-go deployment

- Simplest
- Almost all problems during upgrade are related to state!
- State in stable (not changing) state easiest to handle

- All-or-nothing
- Difficult to test with small number of users (possible, but bad $)
- Rollback affects also everything similarly (stop for rollback)

- Any scripting tool with or without CI/CD works
- Shell scripts (used this with early EC2!)
- Nowadays Puppet, Chef, Fabric, CloudFormation, Terraform, …
- ”kubectl delete -f old.yml; kubectl apply –f new.yml”

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

78

Read-only mode

version 1
read-only = true

version 2
read-only = false

LB target =
version 2

version 1
read-only = false

LB
target =

version 1

version 1
read-only = true

version 2
read-only = false

LB

target =
version 1

Blue-green deployment

version 1version 1 version 2

LB
target =

version 1

LB

target =
version 1

version 1 version 2

LB target =
version 2

Gradual deployment (canary release)

version 1 version 2

LB

100% version 1
0% version 2

version 1 version 2

LB 99% version 1
1% version 2

version 1 version 2

LB 0% version 1
100% version 2

time passes

Service evolution

Host, path,
contents, …

Service
v1 & v2

/v2/

/v1/

(content?)

Service
version 2

Service
version 1

Reverse
Proxy

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

86

?

?

Version
1

Version
2?

Migration
- Idea: Run new and version in parallel but each customer in only one

- Migrate customers to the new version
- Customers get to choose when to migrate

- Pros
- Removes need of explicit versioning from interface
- Version to be used becomes part of the customer configuration
- Migration on customer’s own pace

- Cons
- Requires explicit customer information (+ no SLA on anonymous APIs)
- Schema changes and data migration (Rollback? Lots of data to transfer?)
- Gateway has to know which version to use (dynamic)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

88

Serverless
computing

Serverless

- “Serverless” (or Function-as-a-Service, FaaS)
- There is always some hardware somewhere (servers)
- Operates at a function or a single service level (one or more

“endpoints”)
- ”Someone else” is responsible for

- Providing hardware
- Scaling up and down as needed
- Handling log collection

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

90

API GW
API GW

API GW

Configured for automatic scaling

Replica
Replica

Replica

Service

API GW Function

Service

Event model

- Serverless uses an event model
- For HTTP, receives a request event

- Many other event sources
- Data streaming
- Messages from queues
- IaaS internal events (like bucket upload complete)
- Chimes (e.g. cron triggers)

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

92

API GW Function

Service

Function

Function

Bucket

Event

Upload

HTTP

Queue

Quiz problems

Problem 1:
Scalable service

Monitoring

LB LB

DNSIN A round robin

LB

FE FE FE FE FE

Master Slave Read
replica

Read
replica

Read
replica

write read read

Monitoring

create new instances,
update DNS records

ELB

FE
container

FE
container

FE
container CPU load-

based auto
scaling group

Aurora
master

Read
replica

Read
replica

RDS Aurora
auto scaling
read replica

group

CBA

API GW

Function
1

Function
2

Function
3

DynamoDB

Static
SPA

AWS Lambda
(serverless)

Problem 2:
Why one over
another?

Monitoring

LB LB

DNSIN A round robin

LB

FE FE FE FE FE

Master Slave Read
replica

Read
replica

Read
replica

write read read

Monitoring

create new instances,
update DNS records

ELB

FE
container

FE
container

FE
container CPU load-

based auto
scaling group

Aurora
master

Read
replica

Read
replica

RDS Aurora
auto scaling
read replica

group

API GW

Function
1

Function
2

Function
3

DynamoDB

Static
SPA

AWS Lambda
(serverless)

Good when?

Bad when?

Problem 3:
Large data

whiteboard

Problem 4:
What does this do?

ext ext
ext

ext

ext

index register
y

index register
x

stack pointer
register

alu

accumulator a

pcl

pch

input data
latch

data bus buffer

interaction
register

processor
status register

timing control

interrupt logic

date direction
register

peripheral
output register

peripheral
interface buffer

bus interaction
decode

Exam

- Potential question types
- Concepts and definitions
- Comparison
- Design problem
- Evaluation
- Selection
- …

- Thursday 11.4. at 16:30, TU7 / TUAS

4.4.2019
COM-EV Microservice architectures and serverless computing 2019

103

