Return solution by 20:00, 20 March 2019 - electronically in MyCourses

3. (a) Dyadic: Assuming the unit dyadic $\overline{\bar{I}}$ and

$$
\overline{\bar{B}}=\overline{\bar{I}}+2\left(\mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{x}\right)+\mathbf{k} \times \overline{\bar{I}}
$$

where $\mathbf{k}=\mathbf{u}_{z}$, compute the following:
i. $\operatorname{tr} \overline{\bar{B}}$,
ii. $\operatorname{spm} \overline{\bar{B}}$,
iii. $\operatorname{det} \overline{\bar{B}}$, and
iv. its inverse $\quad\left(=\overline{\bar{B}}^{-1}\right)$.
v. Check and show that $\overline{\bar{B}} \cdot \overline{\bar{B}}^{-1}=\overline{\bar{I}}$ and $\overline{\bar{B}^{-1}} \cdot \overline{\bar{B}}=\overline{\bar{I}}$.
(b) The electric flux density (displacement) for different electric field excitations is:

$$
\begin{gathered}
\mathbf{E}=E_{x} \mathbf{u}_{x} \rightarrow \mathbf{D}=\varepsilon_{0}\left(3 \mathbf{u}_{x}+3 \mathbf{u}_{y}-\mathbf{u}_{z}\right) E_{x} \\
\mathbf{E}=E_{y} \mathbf{u}_{y} \rightarrow \mathbf{D}=\varepsilon_{0}\left(2 \mathbf{u}_{x}+4 \mathbf{u}_{y}+2 \mathbf{u}_{z}\right) E_{y} \\
\mathbf{E}=E_{z} \mathbf{u}_{z} \rightarrow \mathbf{D}=\varepsilon_{0}\left(\mathbf{u}_{x}+\mathbf{u}_{y}+5 \mathbf{u}_{z}\right) E_{z}
\end{gathered}
$$

i. Find the relative permittivity dyadic $\overline{\bar{\varepsilon}} \quad\left(\mathbf{D}=\varepsilon_{0} \overline{\bar{\varepsilon}} \cdot \mathbf{E}\right)$
ii. Calculate $\operatorname{tr} \overline{\bar{\varepsilon}}, \operatorname{spm} \overline{\bar{\varepsilon}}$, and $\operatorname{det} \overline{\bar{\varepsilon}}$
(c) Obviously for the electric field excitations along $\mathbf{u}_{x}, \mathbf{u}_{y}$, and \mathbf{u}_{z}, the flux density \mathbf{D} is not parallel to \mathbf{E}. Find those field directions for which the flux is parallel: $\mathbf{D} \| \mathbf{E}$

Sample solutions

3. It is helpful to make use of Appendix D for dyadic identities. For example from the one that expands the double-cross product $\overline{\bar{A}} \times \overline{\bar{B}}$ one can derive many important special cases, like

$$
\overline{\bar{I}}_{\times}^{\times} \overline{\bar{I}}=2 \overline{\bar{I}}, \quad \overline{\bar{I}}_{\times}^{\times} \overline{\bar{A}}=\overline{\bar{A}}_{\times}^{\times} \overline{\bar{I}}=(\operatorname{tr} \overline{\bar{A}}) \overline{\bar{I}}-\overline{\bar{A}}^{T}, \quad \overline{\bar{I}}_{\times}^{\times}(\mathbf{a} \times \overline{\bar{I}})=\mathbf{a} \times \overline{\bar{I}}, \quad(\mathbf{a} \times \overline{\bar{I}})_{\times}^{\times}(\mathbf{a} \times \overline{\bar{I}})=2 \mathbf{a} \mathbf{a}
$$

and furthermore results with dot and double-cross products

$$
\overline{\bar{I}}: \overline{\bar{I}}=3, \quad(\mathbf{a} \times \overline{\bar{I}}): \overline{\bar{I}}=0, \quad(\mathbf{a} \times \overline{\bar{I}}) \cdot(\mathbf{a} \times \overline{\bar{I}})=\mathbf{a} \mathbf{a}-\mathbf{a} \cdot \mathbf{a} \overline{\bar{I}}, \quad(\mathbf{a} \times \overline{\bar{I}}):(\mathbf{a} \times \overline{\bar{I}})=2 \mathbf{a} \cdot \mathbf{a}
$$

$\operatorname{Now} \overline{\bar{B}}=\overline{\bar{I}}+2\left(\mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{x}\right)+\mathbf{u}_{z} \times \overline{\bar{I}}=\overline{\bar{I}}+3 \mathbf{u}_{y} \mathbf{u}_{x}+\mathbf{u}_{x} \mathbf{u}_{y}$
(a) $\operatorname{tr} \overline{\bar{B}}=3$
(b) $\overline{\bar{B}} \times \overline{\bar{B}}=2\left(\overline{\bar{I}}-3 \mathbf{u}_{z} \mathbf{u}_{z}-3 \mathbf{u}_{x} \mathbf{u}_{y}-\mathbf{u}_{y} \mathbf{u}_{x}\right)$ and $\operatorname{spm} \overline{\bar{B}}=0$
(c) $\operatorname{det} \overline{\bar{B}}=-2$
(d)

$$
\overline{\bar{B}}^{-1}=\frac{\frac{1}{2}\left(\overline{\bar{B}}_{\times}^{\times} \overline{\bar{B}}\right)^{T}}{\operatorname{det} \overline{\bar{B}}}=\frac{1}{2}\left(-\overline{\bar{I}}+3 \mathbf{u}_{z} \mathbf{u}_{z}+\mathbf{u}_{x} \mathbf{u}_{y}+3 \mathbf{u}_{y} \mathbf{u}_{x}\right)
$$

(e)

$$
\left(\overline{\bar{I}}+3 \mathbf{u}_{y} \mathbf{u}_{x}+\mathbf{u}_{x} \mathbf{u}_{y}\right) \cdot \frac{1}{2}\left(-\overline{\bar{I}}+3 \mathbf{u}_{z} \mathbf{u}_{z}+\mathbf{u}_{x} \mathbf{u}_{y}+3 \mathbf{u}_{y} \mathbf{u}_{x}\right)=\frac{1}{2}\left(-\overline{\bar{I}}+3 \mathbf{u}_{z} \mathbf{u}_{z}+\mathbf{u}_{x} \mathbf{u}_{y}+3 \mathbf{u}_{y} \mathbf{u}_{x}\right) \cdot\left(\overline{\bar{I}}+3 \mathbf{u}_{y} \mathbf{u}_{x}+\mathbf{u}_{x} \mathbf{u}_{y}\right)=\overline{\bar{I}}
$$

4. (a) The components of the $\overline{\bar{\varepsilon}}$-dyadic can be picked from the three responses given for the cartesian excitations:

$$
\overline{\bar{\varepsilon}}=3 \mathbf{u}_{x} \mathbf{u}_{x}+2 \mathbf{u}_{x} \mathbf{u}_{y}+\mathbf{u}_{x} \mathbf{u}_{z}+3 \mathbf{u}_{y} \mathbf{u}_{x}+4 \mathbf{u}_{y} \mathbf{u}_{y}+\mathbf{u}_{y} \mathbf{u}_{z}-\mathbf{u}_{z} \mathbf{u}_{x}+2 \mathbf{u}_{z} \mathbf{u}_{y}+5 \mathbf{u}_{z} \mathbf{u}_{z}
$$

and in the cartesian ($x y z$) matrix form (note rows and columns)

$$
\left(\begin{array}{ccc}
3 & 2 & 1 \\
3 & 4 & 1 \\
-1 & 2 & 5
\end{array}\right)
$$

(b) $\operatorname{tr} \overline{\bar{\varepsilon}}=12, \quad \operatorname{spm} \overline{\bar{\varepsilon}}=40, \quad \operatorname{det} \overline{\bar{\varepsilon}}=32$
5. This means finding the eigenvectors of the dyadic $\overline{\bar{\varepsilon}}$, such directions that $\overline{\bar{\varepsilon}} \cdot \mathbf{u}=\lambda \mathbf{u}$. These are parallel to

$$
\mathbf{u}_{1}=\frac{\mathbf{u}_{x}+\sqrt{2} \mathbf{u}_{y}+\mathbf{u}_{z}}{2}, \quad \mathbf{u}_{2}=\frac{-\mathbf{u}_{x}-2 \mathbf{u}_{y}+3 \mathbf{u}_{z}}{\sqrt{14}}, \quad \mathbf{u}_{3}=\frac{\mathbf{u}_{x}-\sqrt{2} \mathbf{u}_{y}+\mathbf{u}_{z}}{2}
$$

