
CS-E4070 — Computational learning theory

Slide set 01 : introduction to PAC learning

Cigdem Aslay and Aris Gionis

Aalto University

spring 2019

reading material

• SS&BD, chapters 2 and 3

• K&V, chapter 1

stranded in a tropical island

need to buy papayas from the local market

• want to learn to recognize tasty fruits

• judge based on color and softness

• start learning after tasting few samples

example from SS&BD

papayas tasting data

color

softness

ha
rd

so
ft

mu
sh
y

gre
en

ye
llo
w

bro
wn

papayas tasting data

color

softness

ha
rd

so
ft

mu
sh
y

gre
en

ye
llo
w

bro
wn

papayas tasting data

color

softness

ha
rd

so
ft

mus
hy

gre
en

ye
llo

w
brow

n

tasty
not tasty

papayas tasting data

color

softness

ha
rd

so
ft

mus
hy

gre
en

ye
llo

w
brow

n

tasty
not tasty

formalization

• X : instance space, or input space
– the space in which we represent our input data

• Y : label space, e.g., Y = {0,1} or Y = {−1,1}
– the set of available labels

• c : X → Y : target concept
– the mapping we want to learn

• C : concept class, i.e., c ∈ C
– a collection of concepts over X

formalization

• D : a probability distribution over X

• EX (D, c) : example (sample) generator
– returns an example (sample) (x, y), where x is
– sampled from D, and y = c(x)

• S = {(x1, y1), . . . , (xm, ym)} : sample set, or training set
– each (x, y) ∈ S is generated by EX (D, c)

the learner

• the learner observes sample set S and outputs

h : X → Y : hypothesis, or predictor

also denoted hS to emphasize dependence on S

• hypothesis h can be used to predict the label of future
data points x

• particularly interested in quantifying the performance
of the learner for predicting data drawn from D

measures of success

• the error of the learner is defined as the probability that
the learner does not predict the correct label on a random
data point sampled from D

errorD(h) = Prx∼D[h(x) 6= c(x)]

other considerations

• the size m of the sample set S

• the running time of the learner

• the class required to represent the hypothesis h

empirical risk

• define empirical risk the error on the training set

errorS(h) =
1
m
|{i ∈ [m] | h(xi) 6= y i}| =

1
m

m∑
i=1

I [h(xi) 6= y i]

where S = {(x1, y1), . . . , (xm, ym)} a sample set of size m,
[n] = {1, . . . ,n}, and I the indicator function

we want to minimize empirical risk

• what may go wrong ?

overfitting

• the hypothesis

h(x) =
{

y i if x = xi for some i
0 otherwise

achieves errorS(h) = 0 but has no generalization power

• such hypothesis may seem artificial, but could be achieved
by a “natural” polynomial of sufficiently high degree

overfitting

sample S = {(x1, y1), . . . , (xm, ym)}

color

softness

ha
rd

so
ft

mu
sh
y

gre
en

ye
llo
w

bro
wn

overfitting

hypothesis hS

color

softness

ha
rd

so
ft

mu
sh
y

gre
en

ye
llo
w

bro
wn

how to deal with overfitting

• do not consider arbritrarily complex hypotheses

• restrict search over a “natural” family of hypotheses

• H : hypothesis class

– e.g., H = set of axis-aligned rectangles

• such rectification is known as inductive bias

• bias is decided in advance; prior knowledge is needed

• empirical risk minimization rule becomes

EXH(S) = arg min
h∈H

errorS(h)

the case of finite hypothesis class H

• let’s assume that H is finite

– not an unreasonable assumption;
– we can always discretize

• the empirical risk minimization rule does not overfit

what do we want show ?

• the empirical risk minimization rule gives hypothesis

hS = EXH(S) = arg min
h∈H

errorS(h)

• we want to show that errorD(hS) is small

• recall that S has been drawn from D

• we assume independent samples, denoted by S ∼ Dm

• realizability assumption : there exists a hypothesis h∗ ∈ H
such that errorD(h∗) = 0

• the realizability assumption implies that errorS(h∗) = 0,
and thus, also errorS(hS) = 0

what can we hope to show ?

• we want to show that errorD(hS) is small

• we want to show that errorD(hS) ≤ ε

where ε > 0 is an accuracy parameter

• in addition, we may get “unlucky” and draw a “bad” sample

• thus, we want errorD(hS) ≤ ε with high probability

• we introduce a confidence parameter δ ∈ (0,1)

• we require errorD(hS) ≤ ε with probability at least 1− δ

what else do we want show ?

• we also want to show that our learning scheme is efficient

• not “too many” samples are sufficient

finite hypothesis class and realizability

• assuming a finite hypothesis class and realizability
the empirical risk minimization rule does not overfit

• theorem (FINITE) : consider a finite hypothesis class H
and assume realizability. Consider accuracy ε > 0,
confidence δ ∈ (0,1), and sample size

m ≥ log(|H|/δ)
ε

.

let hS the hypothesis selected by the empirical risk
minimization rule over a sample S ∼ Dm. Then

errorD(hS) ≤ ε

with probability at least 1− δ.

proof of FINITE theorem (sketch)

• lemma: the probability that any hypothesis with error
more than ε is consistent with a sample S of size m
is less than (1− ε)m|H|

• thus, the probability that all consistent hypotheses
have error at most ε is at least 1− (1− ε)m|H|

• we want to select m so that

(1− ε)m|H| ≤ δ

which gives

m ≥ 1
− ln(1− ε)

(
ln |H|+ ln

(
1
δ

))
≥ 1
ε

(
ln |H|+ ln

(
1
δ

))

PAC learning

• previous statement has the form

the errorqis at most ε︸ ︷︷ ︸
approximate

with probability at least 1− δ︸ ︷︷ ︸
probable

• probably approximate correct (PAC) learning

– note that ε and δ can be arbitrarily close to 0

definition of PAC learning

• (preliminary) definition (PAC learning) :
a concept class C is PAC learnable if there is a learning
algorithm A with the following property:
for every concept c ∈ C, every distribution D, and every
ε > 0 and δ ∈ (0,1), there is a number m so that if A
is given a sample S ∼ Dm, it outputs a hypothesis h ∈ C
that satisfies

errorD(h) ≤ ε

with probability at least 1− δ.

notes on PAC learning definition

• the sample data are drawn from D and labeled according
to a taget concept c ∈ C

• realizability assumption holds because we require h ∈ C

• the definition can be modified so that we can consider
learning a target concept c ∈ C using a hypothesis h
from a different class H

• this is useful when we are agnostic about concept class C

efficient PAC learning

• if the learning algorithm runs in time polynomial in 1
ε and 1

δ

we say that the C is efficiently PAC learnable

• this implies that m is polynomial in 1
ε and 1

δ

applications

• theorem (FINITE) can be rephrased as

every finite hypothesis class is PAC learnable with sample
complexity

mH ≤
log(|H|/δ)

ε

application : no-free-lunch theorem

SS&BD, chapter 5

• we can show that there is no universal learner
– some form of prior knowledge is necessary
– we should know something about D and/or C

• theorem (no-free-lunch) : let A be a learner over X .
Then there exists a distribution D over X × {0,1} such that

1. there exists concept c : X → {0,1} with errorD(c) = 0
2. with probability at least 1/7 over S ∼ Dm we have

that errorD(A(S)) ≥ 1/8

• corollary : let C be the set of all mappings from an infinite
domain X to {0,1}. Then, C is not PAC learnable.

representation size

• efficient PAC learning = polynomial learning algorithm

• we have ignored representation issues

• however, the representation of the target concept matters
– different representations of the same concept may
– differ exponentially

examples

– boolean functions represented in DNF or not

– convex polytope represented by its vertices or by
– linear constraints of its faces

representation size

• for running-time considerations the hypothesis
representation size is important

• hypothesis representation size is a lower bound on
time complexity

• notice that we have no information about the
representation of the target concept

– we only observe labeled data

representation scheme

• a representation scheme specifies how to represent
a concept class with strings of a finite vocabulary

– e.g., a decision tree can be represented by a
– C program that implements the tree

• size(h) is the encoding in bits of a concept h

• for a target concept c (that we do not know how it is
actually represented) we define

size(c) = min
R(z)=c

{size(z)}

i.e., the minimum possible encoding

instance dimension

• we often parameterize an instance space and an
associated concept class by a notion of dimension

• for example

– X n = {0,1}n : the set of n boolean variables

– Cn : boolean formulas in 3-CNF over n variables

– X =
⋃

n≥1 X n

– C =
⋃

n≥1 Cn

modified definition of PAC learning

• (modified) definition (PAC learning) :
a concept class Cn over an instance space X n is PAC

learnable if there is a learning algorithm that satisfies
the properties of the previous (preliminary) definition,
and in addition the algorithm runs in polynomial time
with respect to n, size(c), 1

ε , and 1
δ , when learning a

target concept c ∈ Cn.

learning axis-aligned rectangles

positive
negative

K&V, section 1.1

learning axis-aligned rectangles

learning algorithm

1. observe sample S = {(x1, y1), . . . , (xm, ym)} drawn from
distribution Dm

2. return the tightest-fit axis-aligned rectangle that contains
all positive examples

(by realizability assumption the returned rectangle does
not contain any negative example)

learning axis-aligned rectangles

positive
negative

learned

hypothesis

K&V, section 1.1

learning axis-aligned rectangles

K&V, section 1.1

• theorem

the class of axis-aligned rectangles is efficiently PAC

learnable with sample complexity

mR ≤
4
ε

ln
(

4
δ

)

learning boolean conjunctions

K&V, section 1.3

• consider n boolean variables x1, . . . , xn

• instance space X n = {0,1}n is the set of all truth
assignments of the boolean variables x1, . . . , xn

• we use ai to denote the value of xi in a truth assignment

• concept class Cn is the set of all boolean conjunctions
over X n, e.g.,

c(x1, x2, x3, x4) = x1 ∧ x2 ∧ x4

• size(c) ≤ 2n, and encoding requires O(n log n) bits

• examples (a, y) drawn from EX (D, c) consist of truth
assignments a and their evaluation y = c(a) ∈ {0,1}

learning boolean conjunctions

K&V, section 1.3

learning algorithm

• initial hypothesis

h(x1, . . . , xn) = x1 ∧ x1 ∧ x2 ∧ x2 ∧ . . . ∧ xn ∧ xn

(initially not satisfiable)

• negative examples drawn from EX (D, c) are ignored

• for positive examples

– if ai = 0 we delete literal xi from h

– if ai = 1 we delete literal x i from h

learning boolean conjunctions

K&V, section 1.3

analysis of the learning algorithm

• a literal is deleted from h if it is 0 in a positive example

• clearly, such a literal cannot be in the concept target c

• the literals of h include those of c
i.e., h is a more specific than c

• h will never err in a negative example

• h will only err in a positive example due to some literal
that was not deleted in the training

• high-level idea : if such a literal is not likely to appear in the
training set, then it is also not likely to appear in the test set

proof sketch

K&V, section 1.3
• consider literal z that is in h but not in c
• z causes h to err in positive examples in which z = 0
• define p(z) = Pra∈D [c(a) = 1 ∧ z is 0 in a]
• every error of h can be “blamed” to at least one literal z of h
• by union bound: error(h) ≤

∑
z∈h p(z)

• we call literal z “bad” if p(z) ≥ ε/(2n)
• if h contains no bad literals then error(h) ≤ (2n)ε/(2n) = ε
• the probability that a bad literal is not removed from h

(after seeing m examples) is at most (1− ε/2n)m

• the probability that some bad literal is not removed is
at most 2n(1− ε/2n)m

• again, select m so that 2n(1− ε/2n)m ≤ δ

learning boolean conjunctions

K&V, section 1.3

• theorem

the class of conjunctions of boolean literals is efficiently
PAC learnable with sample complexity

mC ≤
2n
ε

(
ln(2n) + ln

(
1
δ

))

intractability 3-term DNF formulas

K&V, section 1.4

• concept class Cn of 3-term DNF formulas is the set of
all disjunctions

T1 ∨ T2 ∨ T3

where T1, T2, and T3 are conjunctions of literals over
boolean variables x1, . . . , xn

• theorem

the class of 3-term DNF formulas is not efficiently
PAC learnable, unless RP = NP

– reduction from graph 3-coloring problem (!)

intractability proof sketch

• we want to show that C is not PAC learnable

• obtain reduction from an NP-hard language A

• given a we want to answer whether a ∈ A

• we want to : map a to a sample set Sa so that

a ∈ A if and only if ∃ concept c ∈ C consistent with Sa

• we can use a PAC learning algorithm L to decide a ∈ A

• trick : set ε = 1/(2|Sa|) and D uniform over Sa

• any h found by L would be consistent with Sa

because even for one mistake, error would be 1/|Sa| > ε

reduction from graph 3-coloring problem

avoiding intractability by using 3-CNF formulas

• the class of 3-CNF formulas is the set of conjunctions of
clauses, where each clause is a disjunction of at most 3
literals over boolean variables x1, . . . , xn

• 3-CNF formulas are more expressive than
3-term DNF formulas, as

T1 ∨ T2 ∨ T3 =
∧

u∈T1,v∈T2,w∈T3

(u ∨ v ∨ w)

• theorem K&V, section 1.5

the class of 3-term DNF formulas is efficiently PAC

learnable using 3-CNF formulas

remark

• 3-CNF formulas are more expressive than 3-term DNF

• 3-term DNF formulas are not efficiently PAC learnable in
their own representation class, but they are efficiently PAC

learnable using 3-CNF formulas

• the choice of hypothesis representation is very important

final definition of PAC learning

• (final) definition (PAC learning) :
let C be a concept class over an instance space X and
H be a representation class over X . We say that C is
efficiently PAC learnable using H if the previous (modified)
definition of PAC learning is satisfied by a learning
algorithm that is allowed to output a hypothesis from H.

H needs to be at least as expressive as C

We refer to H as the hypothesis class of the PAC learning
algorithm.

summary of previous results

K&V, section 1.5

• the representation class of 1-term DNF formulas
(conjunctions) is efficiently PAC learnable using 1-term
DNF formulas

• for k ≥ 2, the representation class of k -term DNF formulas
is not efficiently PAC learnable using k -term DNF formulas,
but it is efficiently PAC learnable using k -CNF formulas

reading assignment

study in detail the proofs of the theorems we discussed

• SS&BD, chapters 2 and 3

• K&V, chapter 1

