A!

Aalto University
School of Science

CS-E4070 — Computational learning theory

Slide set 01 : introduction to PAC learning

Cigdem Aslay and Aris Gionis
Aalto University

spring 2019

reading material

e SS&BD, chapters 2 and 3
e K&V, chapter 1

stranded in a tropical island

need to buy papayas from the local market

e want to learn to recognize tasty fruits
e judge based on color and softness

e start learning after tasting few samples

example from SS&BD

papayas tasting data

softhess
A

A

X
2)

6\\)

&
g

o
s
@

color

papayas tasting data

softhess
A

A

X
2)

6\\)

&
g

o
s
@

papayas tasting data

softhess O tasty
@ not tasty
A
\?& © ©
&
© o)
&
@ (@)
(@)
*(\Q}G © °
>
Q D &
%) Q)
q@ §>\° O color

papayas tasting data

softhess O tasty
@ not tasty
A
(@)
)
$ ©..%_ o
N ' o O
& o : ©
@ '@ O
o "o
*(\Q}G © °
>
Q N &
%) Q)
q@ §>\° ‘0*0 color

formalization

X :instance space, or input space
the space in which we represent our input data

Y :label space, e.g., Y ={0,1}or Y ={-1,1}
the set of available labels

c: X — Y : target concept
the mapping we want to learn

C : concept class, i.e,, c€C
a collection of concepts over X

formalization

e D : aprobability distribution over X

e EX(D,c) : example (sample) generator
returns an example (sample) (x, y), where x is
sampled from D, and y = c¢(x)

o S={(X4,¥1)s---,(Xm, ¥} : sample set, or training set
each (x,y) € Sis generated by EX(D, c)

the learner

¢ the learner observes sample set S and outputs
h: X — Y : hypothesis, or predictor
also denoted hs to emphasize dependence on S

e hypothesis h can be used to predict the label of future
data points x

e particularly interested in quantifying the performance
of the learner for predicting data drawn from D

measures of success

e the error of the learner is defined as the probability that
the learner does not predict the correct label on a random
data point sampled from D

errorp(h) = Pry.p[h(X) # c(X)]

other considerations
e the size m of the sample set S
e the running time of the learner

e the class required to represent the hypothesis h

empirical risk

e define empirical risk the error on the training set
1 ..
errors(h) = — [{i € [m] | h(x;) # y;}| = Zﬂ[h) # Vil

where S = {(X1,¥4),...,(Xm.,y,,)} @ sample set of size m,
[n] ={1,...,n}, and I the indicator function

we want to minimize empirical risk

e what may go wrong ?

overfitting

e the hypothesis

| y; ifx=x;forsome
h(x) = { 0 otherwise

achieves errors(h) = 0 but has no generalization power

e such hypothesis may seem artificial, but could be achieved
by a “natural” polynomial of sufficiently high degree

overfitting

sample S = {(x,y4)

softness
A
oé& ©
&
© o)
N\e
& o /o)
S o
« (@)
Q%‘
>
Q D <
%))
cﬁe’ *@\\0 do color

overfitting

hypothesis hg

softness

color

how to deal with overfitting

do not consider arbritrarily complex hypotheses

restrict search over a “natural” family of hypotheses

‘H : hypothesis class

— e.g., H = set of axis-aligned rectangles

such rectification is known as inductive bias

bias is decided in advance; prior knowledge is needed

empirical risk minimization rule becomes

EXy(S) = arg hm€|7r{1 errors(h)

the case of finite hypothesis class

e let's assume that # is finite

— not an unreasonable assumption;
we can always discretize

e the empirical risk minimization rule does not overfit

what do we want show ?

the empirical risk minimization rule gives hypothesis

hs = EXy(S) = arg hmelﬂ errors(h)

we want to show that errorp(hg) is small
recall that S has been drawn from D
we assume independent samples, denoted by S ~ D"

realizability assumption : there exists a hypothesis h* ¢ H
such that errorp(h*) = 0

the realizability assumption implies that errors(h*) = 0,
and thus, also errors(hg) =0

what can we hope to show ?

e we want to show that errorp(hg) is small
e we want to show that errorp(hs) < €
where € > 0 is an accuracy parameter
e in addition, we may get “unlucky” and draw a “bad” sample
e thus, we want errorp(hg) < € with high probability
 we introduce a confidence parameter § € (0, 1)

e we require errorp(hg) < € with probability at least 1 — ¢

what else do we want show ?

e we also want to show that our learning scheme is efficient

e not “too many” samples are sufficient

finite hypothesis class and realizability

e assuming a finite hypothesis class and realizability
the empirical risk minimization rule does not overfit

e theorem (FINITE) : consider a finite hypothesis class H
and assume realizability. Consider accuracy € > 0,
confidence 0 € (0, 1), and sample size

1 = 108(1741/0)
€

let hs the hypothesis selected by the empirical risk
minimization rule over a sample S ~ D". Then

errorp(hg) < €

with probability at least 1 — 0.

proof of FINITE theorem (sketch)

¢ lemma: the probability that any hypothesis with error
more than ¢ is consistent with a sample S of size m
is less than (1 — €)"|H|

e thus, the probability that all consistent hypotheses
have error at most ¢ is atleast 1 — (1 — €)"|H|

e we want to select m so that
(1—-€)TH| <o

which gives

m > —In(l—e) (In|7—[+|n (;)) >

| =

o)

PAC learning

e previous statement has the form

the error is at most ¢ with probability at least 1 — &

J/

approximate probable

e probably approximate correct (PAC) learning

— note that € and ¢ can be arbitrarily close to 0

definition of PAC learning

e (preliminary) definition (PAC learning) :
a concept class C is PAC learnable if there is a learning
algorithm A with the following property:
for every concept ¢ € C, every distribution D, and every
€ >0and o < (0,1), there is a number m so that if A
is given a sample S ~ D] it outputs a hypothesis h € C
that satisfies

errorp(h) < e

with probability at least 1 — 0.

notes on PAC learning definition

e the sample data are drawn from D and labeled according
to a taget concept c € C

¢ realizability assumption holds because we require h € C

¢ the definition can be modified so that we can consider
learning a target concept ¢ € C using a hypothesis h
from a different class #

e this is useful when we are agnostic about concept class C

efficient PAC learning

e if the learning algorithm runs in time polynomial in 1@ and %
we say that the C is efficiently PAC learnable

* this implies that m is polynomialin and §

applications

e theorem (FINITE) can be rephrased as

every finite hypothesis class is PAC learnable with sample

complexity 5
< 1094/9)

application : no-free-lunch theorem

SS&BD, chapter 5

e we can show that there is no universal learner
— some form of prior knowledge is necessary
— we should know something about D and/or C

e theorem (no-free-lunch) : let A be a learner over X.
Then there exists a distribution D over X x {0, 1} such that
1. there exists concept ¢ : X — {0, 1} with errorp(c) =0
2. with probability at least 1/7 over S ~ D" we have
that errorp(A(S)) > 1/8

e corollary : let C be the set of all mappings from an infinite
domain X to {0, 1}. Then, C is not PAC learnable.

representation size

o efficient PAC learning = polynomial learning algorithm
e we have ignored representation issues

¢ however, the representation of the target concept matters
— different representations of the same concept may
differ exponentially
examples
— boolean functions represented in DNF or not

— convex polytope represented by its vertices or by
linear constraints of its faces

representation size

¢ for running-time considerations the hypothesis
representation size is important

¢ hypothesis representation size is a lower bound on
time complexity

¢ notice that we have no information about the
representation of the target concept

— we only observe labeled data

representation scheme

e a representation scheme specifies how to represent
a concept class with strings of a finite vocabulary

— e.g., a decision tree can be represented by a
C program that implements the tree

e size(h) is the encoding in bits of a concept h

e for a target concept ¢ (that we do not know how it is
actually represented) we define

size(c) = Rr(ry)rl . {size(z)}

i.e., the minimum possible encoding

instance dimension

e we often parameterize an instance space and an
associated concept class by a notion of dimension
e for example
— Xp=1{0,1}": the set of n boolean variables
— Cp : boolean formulas in 3-CNF over n variables
- X= Un21 Xn
-C= Un21 Cn

modified definition of PAC learning

¢ (modified) definition (PAC learning) :
a concept class C, over an instance space X, is PAC
learnable if there is a learning algorithm that satisfies
the properties of the previous (preliminary) definition,
and in addition the algorithm runs in polynomial time
with respect to n, size(c) -, and 1 , Wwhen learning a
target concept ¢ € C,.

learning axis-aligned rectangles

@ positive
@ negative

>

K&V, section 1.1

learning axis-aligned rectangles

learning algorithm

1. observe sample S = {(x1,y1),...,(Xm.¥,)} drawn from
distribution D

2. return the tightest-fit axis-aligned rectangle that contains
all positive examples

(by realizability assumption the returned rectangle does
not contain any negative example)

learning axis-aligned rectangles

@ positive
@ negative

Q O learned
(0] (o) hypothesis

>

K&V, section 1.1

learning axis-aligned rectangles

K&V, section 1.1

e theorem

the class of axis-aligned rectangles is efficiently PAC
learnable with sample complexity

m <4In 4
=sen(3)

learning boolean conjunctions

K&V, section 1.3
e consider n boolean variables xi, ..., X,

e instance space X, = {0,1}" is the set of all truth
assignments of the boolean variables x1, ..., x,

e we use a; to denote the value of x; in a truth assignment

e concept class C, is the set of all boolean conjunctions
over X,, e.g.,

C(X17X27X37X4) = X1 A YZ A X4

e size(c) < 2n, and encoding requires O(nlog n) bits

e examples (a, y) drawn from EX(D, ¢) consist of truth
assignments a and their evaluation y = c(a) € {0,1}

learning boolean conjunctions

K&V, section 1.3

learning algorithm
e initial hypothesis
h(X1,....Xn) =X AX{ AXo AX2a A... A Xp A Xp
(initially not satisfiable)
e negative examples drawn from EX(D, c¢) are ignored

e for positive examples
— if a; = 0 we delete literal x; from h

— if a; = 1 we delete literal x; from h

learning boolean conjunctions

K&V, section 1.3

analysis of the learning algorithm

e aliteral is deleted from hif itis 0 in a positive example

clearly, such a literal cannot be in the concept target ¢

the literals of h include those of ¢

i.e., his a more specific than ¢

h will never err in a negative example

h will only err in a positive example due to some literal
that was not deleted in the training

high-level idea : if such a literal is not likely to appear in the
training set, then it is also not likely to appear in the test set

proof sketch

K&V, section 1.3
e consider literal z that is in h but not in ¢
e z causes hto errin positive examples in which z =0
e define p(z) = Pracp[c(a) =1 A zis0ina]
e every error of h can be “blamed” to at least one literal z of h
e by union bound: error(h) < 3", p(2)
o we call literal z “bad” if p(z) > €/(2n)
e if h contains no bad literals then error(h) < (2n)e/(2n) = €
¢ the probability that a bad literal is not removed from h
(after seeing m examples) is at most (1 — €/2n)™
¢ the probability that some bad literal is not removed is
at most 2n(1 —€/2n)™
« again, select mso that 2n(1 — ¢/2n)™ < ¢

learning boolean conjunctions

K&V, section 1.3

e theorem

the class of conjunctions of boolean literals is efficiently
PAC learnable with sample complexity

me < % <In(2n) +1In (;))

intractability 3-term DNF formulas

K&V, section 1.4

e concept class C, of 3-term DNF formulas is the set of
all disjunctions

T1 V T2 V T3
where Tq, T, and T3 are conjunctions of literals over
boolean variables x4, ..., x,
e theorem

the class of 3-term DNF formulas is not efficiently
PAC learnable, unless RP = NP

— reduction from graph 3-coloring problem (!)

intractability proof sketch

e we want to show that C is not PAC learnable
e obtain reduction from an NP-hard language A
e given a we want to answer whether a ¢ A

e we want to : map ato a sample set S, so that
a € Aifand only if 9 concept ¢ € C consistent with S,

e we can use a PAC learning algorithm L to decide a € A
e ftrick : set e = 1/(2|Sz|) and D uniform over S,

e any h found by L would be consistent with S,
because even for one mistake, error would be 1/|S;| > €

reduction from graph 3-coloring problem

Probably Approximately Correct Learning 21

8§ Sa
<011111,1> <001111,0>
<101111,1> <011011,0>
<110111,1> <011101,0>
<111011,1> <100111,0>
<111101,1> <101110,0>
<111110,1> <110110,0>

<111100,0>

TH=X2/\X3/\X4/\X5

Tg =Xy AXzAXg
Ty =X{ AXp AXg A X5 AXg

Figure 1.5: A graph G with a legal 3-coloring, the associated sample, and
the terms defined by the coloring.

avoiding intractability by using 3-CNF formulas

e the class of 3-CNF formulas is the set of conjunctions of
clauses, where each clause is a disjunction of at most 3
literals over boolean variables x1, ..., X,

e 3-CNF formulas are more expressive than
3-term DNF formulas, as

TivTovTy= /\ (U\/V\/W)
ueTy,veTo,weTs
e theorem K&V, section 1.5

the class of 3-term DNF formulas is efficiently PAC
learnable using 3-CNF formulas

remark

e 3-CNF formulas are more expressive than 3-term DNF

e 3-term DNF formulas are not efficiently PAC learnable in
their own representation class, but they are efficiently PAC
learnable using 3-CNF formulas

e the choice of hypothesis representation is very important

final definition of PAC learning

e (final) definition (PAC learning) :
let C be a concept class over an instance space X and
‘H be a representation class over X. We say that C is
efficiently PAC learnable using H if the previous (modified)
definition of PAC learning is satisfied by a learning
algorithm that is allowed to output a hypothesis from 7.

H needs to be at least as expressive as C

We refer to # as the hypothesis class of the PAC learning
algorithm.

summary of previous results

K&V, section 1.5

e the representation class of 1-term DNF formulas
(conjunctions) is efficiently PAC learnable using 1-term
DNF formulas

e for k > 2, the representation class of k-term DNF formulas
is not efficiently PAC learnable using k-term DNF formulas,
but it is efficiently PAC learnable using k-CNF formulas

reading assignment

study in detail the proofs of the theorems we discussed

e SS&BD, chapters 2 and 3
o K&V, chapter 1

