

Time Series Analysis Spurious Regression Unit roots Cointegration

Tomi Seppälä Department of Information and Service Management

Spurious Regression

Study the following linear regression model

$$Y_{t} = \beta_{1} + \beta_{2}X_{t} + u_{t}, u_{t} \sim WN\left(0, \sigma^{2}\right)$$

where Y_t , X_t are independent Random Walks (unit root processes) Usually R^2 is high, even though Y_t and X_t are not related in any way.

Why does spurious regression happen? Assume two random walks (RW)

$$Y_t = Y_{t-1} + w_t$$
, $w_t \sim WN\left(0, \sigma_y^2\right)$

$$X_t = X_{t-1} + v_t, v_t \sim WN\left(0, \sigma_x^2\right)$$

Why does spurious regression happen

Test: $H_0: \beta_1 = \beta_2 = 0$ against $H_1: \beta_1 \neq 0$ or $\beta_2 \neq 0$ If H_0 is <u>true</u>, plugging $\beta_1 = \beta_2 = 0$ into (SR) gives $y_t = u_t$ is WN but Y_t was supposed to be RW

This is contradiction, since H_0 can never be true

 \rightarrow There is no sense in even testing H_0

Note: same argument applies, if you test H_0 : $\beta_2 = 0$ against H_1 : $\beta_2 \neq 0$

In this case you can run regression for the differences:

$$\Delta Y_t = \alpha_1 + \alpha_2 \Delta X_t + u'_t, u'_t \sim WN(0, \sigma^2), \text{ where} \qquad \alpha_1 = 0$$

If $Y_t \sim I(1)$ and $X_t \sim I(1)$

However, there is no equilibrium solution for this model!

Some properties related to order of integration

- 1. $X_t \sim I(0) \rightarrow a + bX_t \sim I(0)$
- 2. $X_t \sim I(1) \rightarrow a + bX_t \sim I(1)$
- 3. $X_t \sim I(0), Y_t \sim I(0) \rightarrow aX_t + bY_t \sim I(0)$
- 4. $X_t \sim I(1), Y_t \sim I(0) \rightarrow aX_t + bY_t \sim I(1)$

 X_t dominates, since it is non-stationary

More generally:

 $X_t \sim I(d_1), Y_t \sim I(d_2) \rightarrow aX_t + bY_t \sim I(d)$, where $d = \max(d_1, d_2)$

- 5. $X_t \sim I(1)$, $Y_t \sim J(1)$ then there are two possibilities:
- a) $aX_t + bY_t \sim I(0)$, if X_t and Y_t co-integrated (long-term relationship) or
- b) b) $aX_t + bY_t \sim I(1)$, if X_t and Y_t are not co-integrated

Some properties related to order of integration

Example:
$$X_t = Z_t + u_t$$
 $u_t \sim WN(0, \sigma^2)$ $I(0)$
 $Y_t = Z_t + v_t$ $v_t \sim WN(0, \sigma^2)$ $I(0)$

If $Z_t \sim I(1)$ then $X_t \sim I(1)$ and $Y_t \sim I(1)$ But $X_t - Y_t = u_t - v_t \sim I(0)$ is stationary We say that X_t and Y_t are cointegrated of order (1,1): $X_t, Y_t \sim CI(1,1)$

Cointegration of order (m,n): Cl (m,n)

Definition: Two processes X_t and Y_t are CI(m, n) if

- 1. $X_t \sim I(m)$ and $Y_t \sim I(m)$
- 2. There exist α_1 and α_2 such that $\alpha_1 X_t + \alpha_2 Y_t \sim I(m - n)$

Example: Assume X_t , $Y_t \sim I(1)$

Regression: $Y_t = \beta_1 + \beta_2 X_t + u_t, u_t \sim WN(0, \sigma^2)$

If X_t and Y_t are *cointegrated of order* (1,1), i.e. $(X_t, Y_t) \sim CI(1,1)$ then there exist α_1 and α_2 such that: $\alpha_1 X_t + \alpha_2 Y_t \sim I(0)$ Dividing by α_2 does not affect stationarity:

$$Y_t + \frac{\alpha_1}{\alpha_2} X_t \sim I(0)$$

Cointegration of order (m,n): Cl (m,n)

Dividing by α_2 does not affect stationarity:

$$Y_t + \frac{\alpha_1}{\alpha_2} X_t \sim I(0)$$

Now in the regression equation: $u_t = Y_t - \beta_1 - \beta_2 X_t$

If we choose
$$\frac{\alpha_1}{\alpha_2} = -\beta_2$$

we get

$$u_t = Y_t - \frac{\alpha_1}{\alpha_2} X_t - \beta_1 \sim I(0)$$

Which shows that there exists (Long-run) co-integrating relationship and therefore X_t and Y_t are cointegrated of order (1,1):

Consequences of the order of integration and cointegration on the estimation of linear regression models

 $Y_t = \beta_1 + \beta_2 X_t + u_t, \ u_t \sim WN$

<u>**Case 1**</u>: Both X_t , $Y_t \sim I(0)$ is stationary Use OLS

<u>**Case 2</u></u>: If X_t \sim I(d_1), Y_t \sim I(d_2), and d_1 \neq d_2, i.e. order of integration is different for X_t and Y_t then does <u>not</u> make to estimate a regression model. Usually I(0) and I(1)</u>**

Cointegration

<u>Case 3</u>: If $X_t \sim I(d)$, $Y_t \sim I(d)$, usually d = 1If same order of integration, two possibilities: **a**. X_t and Y_t are not co-integrated You can (and have to) use a difference model (of order d) E.g. $\Delta Y_t = \beta_1 \Delta X_t + u_t$ (but there is no LT relationship) Note: There is no constant term

b. If X_t and $Y_t \sim I(d, d)$; usually d = 1 then possibly we could use difference model, but much better to use, and you should use the **Error Correction Model (ECM)**: If d = 1 $\Delta Y_t = \beta_1 \Delta X_t + \beta_2 (X_{t-1} - \gamma Y_{t-1}) + u_t$ where $X_t - \gamma Y_t \sim I(0)$

