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Upcoming Sessions
• Lecture 6: Laminar premixed flames

• Lecture 7: Details of laminar premixed flames  

• Exercise 4 on theory and practice of laminar flame computations

• Exercise 5: Simple emission computations with Cantera

• My Course web interface for discussions and questions:

https://mycourses.aalto.fi/ 

https://mycourses.aalto.fi/


Premixed (PM) flames (Recap)
• Reactants are perfectly premixed prior to ignition

→ all components necessary for the reaction are present in the fuel

→ to initiate reaction one has only to ignite the mixture

→ complete combustion 

• Formation of a propagation front 

- Front separates unburned  from fully burned

- self-sustaining

• Targeted to lean conditions 

→ complete combustion → “no” soot → no bright flame  

→ Visibility depends on fuel: e.g. blue glow of the premixed bunsen flame originates 

from excited states of  CH, C2 (intermediate species in oxidization) 

→ Lower combustion temperatures → lower Nox

• Applications : Gasoline and natural gas engines, modern gas turbines, explosions 



Chemical structure of PM flames        
                                   (Recap)• Stoichiometric hydrogen flame 

C. K. Law. Combustion Physics Fig. 7.8.1

Preheat zone
(diffusive-convective) 

H2 is highly 
diffusive - broader 
diffusion zone than 
O2 or T

NOTE: O2 is NOT 
created via 
reactions but its 
relative portion is 
increased because 
H2 diffuses away

Diffusive-reactive zone



Chemical structure of PM flames        
                                   (Recap)• Stoichiometric hydrogen flame 

C. K. Law. Combustion Physics Fig. 7.8.1

Reaction zone

H back diffuses 
towards unburned 
mixture and reacts 
with O2



Chemical structure of PM flames        
                                           (Recap)• Heat release in stoichiometric hydrogen flame 

C. K. Law. Combustion Physics Fig. 7.8.2-3

-Maximum heat release rate (HRR) at low T~800K

-HRR depends on reactions: can be even endothermic



Chemical structure of PM flames        
                                    (Recap)• Important notes:

- PM Flame has a finite thickness

- Mass and heat diffusion are very important 

- Radicals and intermediate species can diffuse and initiate 

otherwise non-active reactions

- Reactions take place throughout the flame thickness

- Max heat release takes place at low T



Laminar flame propagation
• Propagating flame front is an

 intrinsic feature of PM flames

• What influences to the propagation velocity ?

• How can we estimate this “laminar flame speed” ?

https://upload.wikimedia.org/wikipedia/commons/e/e3/Blow_
Torch_(3257353199).jpghttps://www.youtube.com/watch?v=IwjiVdk_msA

u
f



Deflagration vs. detonation
• PM flame propagation is a wave phenomena

– Subsonic  = deflagration
– Supersonic = detonation

• Deflagration waves: 
– pressure and density decrease across the wave

– Deflagration wave considered near isobaric

• Detonation
– pressure and density increase across the wave



Deflagration vs. detonation
• PM flame propagation is a wave phenomena

– Subsonic  = deflagration
– Supersonic = detonation

• Deflagration waves: 
– pressure and density decrease across the wave

– Deflagration wave considered near isobaric

• Detonation
– pressure and density increase across the wave

Most important in 
practical 
applications



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Conservation of mass

● Species  

●  Momentum

● Specific enthalpy



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Conservation of mass

● Species  

●  Momentum

● Specific enthalpy

Typically expressed in 
mass fractions

Species-wise diffusion

Remember, viscosity in pressure 
tensor  depends on mixture 

Heat flux 
e.g. radiation

Consumption / production



Governing Equations in Reactive Flows
(Warnatz Ch. 12)



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Heat flux consists of

- Heat conduction (c)

- Dufour effect (negligible) (D)

- Flux due to mass diffusion (d)

Coefficient of 
thermal diffusion : 
important for H,H2 
at low 
temperatures 
(often omitted)

Binary diffusion coefficient : 
depend on concentrations 
and temperature



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Diffusion flux consists of

- Diffusion due to concentration (d)

- Thermal diffusion  (T)

- Pressure diffusion (negligible) (p)

Multicomponent 
diffusion coefficient



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Computing the multicomponent diffusion coefficient

- From the kinetic theory of gases

- Very expensive

- Many theoretical and practical computational tricks needed

- Information (beyond course coverage) from Warnatz Ch. 5



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Alternative diffusion flux formulations

- Mixture-average formulation 

Binary diffusion coefficient :
 (Lennard-Jones potentials  Binary diffusion coefficients, see Lec 3)→



Governing Equations in Reactive Flows
(Warnatz Ch. 12) 

● Alternative diffusion flux formulations

- Define non-dimensional Lewis number for each specie :

- Use this to rewrite your conservation equations :

- Lewis number can be then species-wise constant, depend on temperature or Le = 1

- Le =1 is justified if turbulent mixing dominates the flow



Governing Equations in Reactive Flows
(Warnatz Ch. 12)



Governing Equations in Reactive Flows
(Warnatz Ch. 12)

Laminar flame speed of a methane flame with different 
diffusion models. Bongers et al. 2010

Le=1

Multicomponent

Mixture-averagedLe
i
=constant



Three levels of detail
• Flame sheet

- Discontinuity

- Conservation of mass and energy

- Rankine-Hugoniot

- Analytical analysis + combustion models

• Reaction sheet level

- Includes the preheat zone

- Finite thickness

- Discontinuous reaction sheet

- Analytical analysis + combustion models

• Complete structure

- Fundamental understanding 

- Combustion models
C. K. Law. Combustion Physics Fig. 7.2.1



Zeldovich’s analysis of flame propagation
(Warnatz Ch. 8) 

● Solving the presented conservation equations is only possible via numerical methods

● Domain discretization for numerical methods should resolve the flame structure

● Numerical solution very CPU-intense  modeling above 1D is mandatory→

● Often the machine-crunched brute-force solution does not help us to understand the flame

● Simplified analytical analysis may give a lot of insight



Zeldovich’s analysis of flame propagation
(Warnatz Ch. 8) 

● Zeldovich and Kamenetskii developed the following analytical approach:

- Assume 1D reacting flow 

- Assume steady-state flame (equivalent to steady flame front in bunsen burners)

- One-step global reaction : Fuel (F)  Products (P)→

- Global reaction rate

- Multicomponent diffusion negligible and diffusion does not depend on location

- The above results the following equations :  



Zeldovich’s analysis of flame propagation
(Warnatz Ch. 8) 

- Furthermore assuming Le = 1 and the two equations become similar

- Change of variables and integration on both sides results single equation 

- We want to solve the profiles of temperature and species and particular velocity 

- (steady state) +  2nd order ODE   eigenvalue problem   eigenvalue→ →

- Mass burning flux (lam. Flame speed) is the fundamental property of the flame 



Zeldovich’s analysis of flame propagation
(Warnatz Ch. 8) 

• Implications of Zeldovich’s analysis                          :

- Laminar flame speed depends on the diffusivity        and characteristic time of reaction 

- Flame propagation is caused by diffusive processes 

- Necessary gradients (wave) are sustained by the chemical reaction

• Furthermore, one can show that the flame thickness follows :        
 
= 



Laminar flame speed dependencies
 

● How does the mixture temperature effect?



Laminar flame speed dependencies
 

● Mixture temperature effect : Stoichiometric CH4-air flame 

C.K. Law Combustion Physics : Fig. 7.7.12 



Laminar flame speed dependencies
 

● How does the ambient pressure effect?



Laminar flame speed dependencies
 

● Pressure effect on CH4-air flame : Laminar flame speed (a) and burning flux (b)  

C.K. Law Combustion Physics : Fig. 7.7.7 



Laminar flame speed dependencies
 

● Pressure effect on flame thickness  

C.K. Law Combustion Physics : Fig. 7.7.11 



Laminar flame speed dependencies
 

● How about the fuel ?



Laminar flame speed dependencies
●  Adiabatic flame temperature and Lewis number effect

- Higher heat of combustion → faster propagation

- S
L
 increases with T

ad 
 and S

L
 ~ Le1/2 

C.K. Law Combustion Physics : Fig. 7.7.2 

Peaks near stoich.

S
L
 peaks at rich

Le increases



Laminar flame speed dependencies
 

● Adiabatic flame temperature of the fuel dominates the flame speed

● Butane – Heptane share also very similar adiabatic flame temperature curves 

C.K. Law Combustion Physics : Fig. 7.7.4 



 

● However, molecular structure has a role, here fuels diluted to share same T
ad

 at stoich.

Laminar flame speed dependencies

C.K. Law Combustion Physics : Fig. 7.7.6 



Laminar flame speed dependencies
 

● Transport property effect :  

C.K. Law Combustion Physics : Fig. 7.7.13 



1D flame calculations in practice

● Cantera has full capabilities to solve detailed chemistry in 1D 

- http://www.cantera.org/docs/sphinx/html/cython/examples.html#one-dimensional-flames

- In particular we are interested in freely propagating adiabatic premixed flame : 

http://www.cantera.org/docs/sphinx/html/cython/examples/onedim_adiabatic_flame.html

- Note the choice of the mixture-averaged or multicomponent diffusion model

- Cantera will discretize the 1D domain into N solution points

- Resolution and time steps are controlled by the solver in run-time

- However at high temperatures and pressures user has to modify the grid resolution criteria, time step 

and solver tolerances setup. 

 

http://www.cantera.org/docs/sphinx/html/cython/examples.html#one-dimensional-flames
http://www.cantera.org/docs/sphinx/html/cython/examples/onedim_adiabatic_flame.html
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