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1 Further Elements of Group Theory

In this first chapter we will give an introduction to group theory. Our main results will be

the characterization of finitely generated Abelian groups, and Sylow’s theorems. Finally we

will talk about solvable groups which will turn out to be important for our study of field

extensions in a later chapter.

1.1 Basic Notions

Definition 1.1 A group is a triple (G, ·, e) , where G is a non-empty set and · is a binary

operation on G , i.e. a mapping G×G −→ G such that the following is true:

(i) a · (b · c) = (a · b) · c for all a, b, c ∈ G .

(ii) e · a = a for all a ∈ G .

(iii) For every a ∈ G there exists b ∈ G with b · a = e .

If, in addition,

(iv) a · b = b · a for all a, b ∈ G .

then G is called an Abelian group. If G is finite, then |G| is called the order of G ,

otherwise we say G has infinite order.

By abuse of notation we usually write G instead of (G, ·, e) . Moreover, we will omit the

operation symbol · , i.e. we write ab instead of a · b . Finally we point out that the identity

e is often written as 1 . In case of Abelian groups people mostly use the operation symbol

+ , and in this case 0 takes the role of the identity.

Remark 1.2 For every group G there holds:

(a) g1 = g for all g ∈ G .

(b) The identity 1 is uniquely determined by its properties.

(c) If ba = 1 then ab = 1 for a, b ∈ G .

Proof : (a) Let g ∈ G be arbitrary, there are elements h, f ∈ G with hg = 1 and fh = 1 .

From this we get f1 = f(hg) = (fh)g = 1g = g , and hence g1 = (f1)1 = f(1 ·1) = f1 = g .

(b) If 1′ were a further identity, then we would have 1 = 1′1 = 1′ by (a).

(c) As we have already seen in (a) for a, b, c ∈ G with ba = 1 = cb we have the equality

c = c1 = a , and this means 1 = cb = ab . 2

2



Definition 1.3 A non-empty subset U of a group G is called a subgroup, if the operation

of G can be restricted to U and U is a group with respect to this operation. We then

write U ≤ G

Remark 1.4 Let G be a group with identity 1 .

(a) If U is a subgroup of G then 1 ∈ U . This can be verified as follows: if f is the

identity of U then f = f1 = f(ff−1) = f 2f−1 = ff−1 = 1 .

(b) {1} and G are subgroups of G .

Examples 1.5 (a) The most natural examples of (Abelian) groups are (Z,+, 0) , (Q,+, 0) ,

(R,+, 0) and (C,+, 0) , but also (Z/nZ,+, 0) . Moreover ({−1, 1}, ·, 1)) , (Q×, ·, 1) ,

(R×, ·, 1) as well as (C×, ·, 1) are Abelian groups, where we abbreviate F× := F \{0} .

(b) If F is a field and n a positive integer, then GL(F, n) , the set of all invertible n×n -

matrices, forms a group. A well-studied subgroup of this group is SL(F, n) , the set of

all invertible matrices with determinant 1 .

(c) The set S(X) of all bijective mappings (permutations) of a set X onto itself forms

a group with respect to the composition of mappings. If X = {1, . . . , n} then this

group is denoted by Sn and possesses n! elements. An important subgroup of Sn is

An , the set of all even permutations. Its order is given by n!/2 for all n ≥ 2 .

We are now interested in an “easy-to-apply criterion” for the subgroup property.

Lemma 1.6 Let G be a group and U a subset of G . Then U is a subgroup of G if and

only if:

(a) U 6= ∅ .

(b) If a, b ∈ U , then also ab ∈ U .

(c) If a ∈ U , then also a−1 ∈ U .

Proof : If U ≤ G then certainly (a) and (b) are satisfied. Taking into consideration that

1 ∈ U by 1.4(a) we then find that also (c) holds.

Conversely, assuming these conditions, the operation on G allows for restriction to U by

(b), and associativity does not require a proof. For a given u ∈ U we have u−1 ∈ U by (c)

and hence 1 = uu−1 ∈ U by (b). All in all this shows the claim. 2

The criteria that we have discussed so far allow for a further simplification. Its proof is left

to the reader.
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Lemma 1.7 Let U be a subset of a group G . Then U is a subgroup of G if and only if:

(a) U 6= ∅ .

(b) If a, b ∈ U then also ab−1 ∈ U .

If G is finite, then (b) can be replaced by

(b*) If a, b ∈ U , then also ab ∈ U .

If G is a group and (Ui)i∈I is a family of subgroups of G , then
⋂
i∈I Ui is also a subgroup

of G . This is easily verified and justifies the following definition.

Definition 1.8 Let G be a group and M a subset of G . We call

〈M〉 :=
⋂
{U |M ⊆ U ≤ G}

the subgroup generated by M in G . It is the smallest subgroup of G which contains M ,

and we mention that 〈∅〉 = {1} .

A more constructive description of the subgroup generated by M is given by the following

proposition. The proof is left as an exercise.

Proposition 1.9 Let G be a group.

(a) For every subset M of G there holds

〈M〉 = {xn1
1 . . . xnk

k | k ∈ N, ni ∈ Z and xi ∈M}.

In particular, for arbitrary g ∈ G we have 〈{g}〉 = {gn | n ∈ Z} .

(b) If U and V are subgroups of G , then

〈U ∪ V 〉 = {u1v1 . . . ukvk | k ∈ N, ui ∈ U and vi ∈ V }.

If the subgroup generated by a single element g ∈ G is finite, then the order of this subgroup

is also called the order of g , i.e. o(g) := 〈{g}〉 .
From Linear Algebra we are used to the fact that for two subspaces U and W of a vector

space (V,+, 0, F ) there holds

〈U ∪ V 〉 = U + V = {u+ v | u ∈ U, v ∈ V }.

In light of the foregoing proposition this is not a surprise since it is true for Abelian groups

in general. In the following we will discuss in how far we can state a similar fact in the

context of arbitrary groups.
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Definition 1.10 If U, V are subgroups of a group G , we define

UV := {uv | u ∈ U, v ∈ V }.

Clearly we have U{e} = UU = U = {e}U und GU = G = UG , however UV 6= V U in

general.

Proposition 1.11 Let U, V be subgroups of the group G .

(a) UV = V U holds if and only if UV is a subgroup of G .

(b) If UV = V U , then UV = 〈U ∪ V 〉 .

Proof : (a) Assume that UV is a subgroup of G and let g be an element of UV . Then

also g−1 ∈ UV and of the form g−1 = uv for suitable u ∈ U and v ∈ V . Consequently

g = v−1u−1 is an element of V U , which shows UV ⊆ V U . Conversely, if g ∈ V U , then

g = vu for suitable v ∈ V and u ∈ U . Hence g−1 = u−1v−1 is an element of UV . As UV

is a subgroup we therefore have g ∈ UV .

Assume now that UV = V U ; we apply criterion 1.7 and first observe that UV 6= ∅ . Let

g, h ∈ UV , then there exist u1, u2 ∈ U und v1, v2 ∈ V with g = u1v1 und h = u2v2 . We

then have gh−1 = u1v1v
−1
2 u−12 = u1vu2 , where v = v1v

−1
2 . Now we have u1v = v′u′1 for

suitable v′ ∈ V and u′1 ∈ U , and this leads to gh−1 = v′u′1u
−1
2 ∈ V U = UV . For this

reason we finally see that UV is a subgroup.

(b) If UV = V U , then multiple applications of the ideas in (a) lead to

〈U ∪ V 〉 = {u1v1 . . . ukvk | k ∈ N, ui ∈ U und vi ∈ V }
= {uv | u ∈ U, v ∈ V } = UV,

which shows the claim. 2

Let G be a group and U a subgroup of G . We consider the relations ∼L and ∼R , with

g ∼L h if and only if gU = hU , and g ∼R h if and only if Ug = Uh . These relations

are equivalence relations and their equivalence classes are of the form gU (respectively Ug )

with g ∈ G . These are called left cosets (or right cosets, respectively) of U in G . A simple

proof shows that there is a bijection between the set of all left cosets and the set of all right

cosets. This justifies the following definition.

Definition 1.12 Let U be a subgroup of the group G . If U has finitely many left cosets

(right cosets) in G then we call the number of these the index of U in G , denoted by

[G : U ] . If this number is not finite, then we say U is of infinite index in G .
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If U is a subgroup of the finite group G then the relations G =
⋃
g∈G gU and |gU | = |U |

imply what is called Lagrange’s theorem.

Theorem 1.13 Let U be a subgroup of the finite group G . Then there holds

|G| = [G : U ] · |U |.

In particular we see that the order and index of a subgroup of a finite group are divisors of

the order of the given group.

Remark 1.14 A converse of the foregoing statement is wrong in general, i.e. for a given

divisor d of the group order there does not necessarily exist a subgroup of order d . However,

in the context of Abelian groups and when dealing with Sylow’s theorems we will see in how

far such results can be stated.

Similar to what we learned in Linear Algebra we will now find out how we can compute with

cosets of a subgroup in a given group. For this we need some preparation.

Definition 1.15 A subgroup U of a group G is called a normal subgroup (in short form

U � G ) if each of its left cosets is at the same time a right coset.

Clearly {1} and G are normal subgroups of a group G . In an Abelian group every sub-

group is normal. The following proposition gives information about the immediately arising

question for normality criteria.

Proposition 1.16 For a subgroup U of a group G the following are equivalent:

(a) U is normal in G .

(b) Every right coset of U in G is also a left coset.

(c) For all g, h ∈ G the set gUhU is a left coset of U in G .

(d) For all g, h ∈ G there holds gUhU = ghU .

(e) gUg−1 ⊆ U for all g ∈ G .

(f) gUg−1 = U for all g ∈ G .

(g) gU = Ug for all g ∈ G .

Proof : To show that (a) implies (b) let R be a transversal of all left cosets of U in G ,

i.e. R ⊆ G and G =
⋃
g∈R

gU . As U is normal, we know that for every g ∈ R there exists

h(g) ∈ G with gU = Uh(g) . For this reason we have G =
⋃
g∈R

gU =
⋃
g∈R Uh(g) , and here
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every right coset must have occured. Hence every right coset is at the same time a left coset.

Next we show that (b) implies (c). For arbitrary h ∈ G we know that Uh is a right

coset and hence a left coset, i.e. there exists k ∈ G such that Uh = kU . This shows that

gUhU = gkUU = gkU , which is clearly a left coset of U in G .

To see that (c) implies (d) let gUhU = `U for some ` ∈ G . Note, that gh = g1h1 ∈
gUhU = `U and hence gh may be taken as representative for `U . Consequently we have

ghU = `U .

Let us now show that (d) implies (e). For g ∈ G we have gUg−1U = gg−1U = U and

therefore immediately gUg−1 ⊆ U .

To show that (e) implies (f) let gUg−1 ⊆ U for all g ∈ G . Then this must clearly also be

true for all g−1 ∈ G . Consequently g−1Ug ⊆ U which by multiplication with g and g−1

respectively can be transformed to U ⊆ gUg−1 .

To prove that (g) follows from (f) we get by multiplication from the right with g immediately

that from gUg−1 = U there follows the relation gU = Ug .

It is finally clear that (g) implies (a). 2

Definition 1.17 If {1} and G are the only normal subgroups of a group G then we call

G a simple group.

If G is of prime order then G is Abelian and simple. We will see later that the finite Abelian

groups are simple if and only they are prime.

A characterization of all finite (non-Abelian) simple groups was initiated by the so-called

Hölder program and was completed in the 80’s of the previous century. This result is one of

the most complicated and rich mathematical works that has ever been published.

In the following we give further properties of normal subgroups.

Proposition 1.18 Let G be a group:

(a) If (Ni)i∈I is a family of normal subgroups of G , then
⋂
i∈I
Ni is normal, too.

(b) If N is a normal subgroup of G and U a subgroup of G , then NU is a subgroup of

G .

(c) If N is a normal subgroup of G and U a subgroup of G , then N ∩ U is a normal

subgroup of U .

(d) If N1, N2 are normal subgroups of G , then so is N1N2 .

(e) If N1, N2 are normal subgroups of G with N1 ∩N2 = {1} , then n1n2 = n2n1 for all

n1 ∈ N1 and n2 ∈ N2 .
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Proof : (a) The subgroup property of the intersection is not an issue here. For the remaining

property we immediately verify that

g(
⋂
i∈I

Ni)g
−1 =

⋂
i∈I

(gNig
−1) =

⋂
i∈I

Ni.

(b) This follows from NU = UN and 1.11.

(c) On the one hand we have u(N ∩ U)u−1 ⊆ N for all u ∈ U , since N is a normal sub-

group of G . On the other hand it is trivial that u(N∩U)u−1 ⊆ U , and this yields the claim.

(d) According to (b) we know that N1N2 is a subgroup of G . We then compute gN1N2g
−1 =

gN1g
−1gN2g

−1 = N1N2 and this yields the claim.

(e) Let n1 ∈ N1 and n2 ∈ N2 . Then on the one hand we have n1n2n
−1
1 n−12 ∈ N2 , since

n1n2n
−1
1 and n2 are contained in N2 . On the other hand we have n1n2n

−1
1 n−12 ∈ N1 , since

n1 and n2n
−1
1 n−12 are contained in N1 . For this reason n1n2n

−1
1 n−12 ∈ N1 ∩N2 = {1} and

this finishes the proof. 2

Let’s come to a further central aspect of this section: the quotient group.

Definition 1.19 Let N be a normal subgroup of the group G . Then according to the

above the set G/N := {gN | g ∈ G} together with the operation

G/N ×G/N −→ G/N, (gN, hN) 7→ ghN

is a group. This group is called the quotient group of G by N and its identity is given by

1N = N . For g ∈ G the inverse of gN in G/N is given by g−1N .

If G is Abelian, then so are N and G/N the converse of which however is not true in

general. If G is finite then so are N and G/N , and by Lagrange’s theorem (cf. 1.13) we

have |G/N | = [G : N ] = |G|
|N | .

Definition 1.20 Let G and H be groups. A mapping α : G −→ H is called a group ho-

momorphism, if α(gh) = α(g)α(h) , for all g, h ∈ G . If α is injective (surjective, bijective),

then we call α monomorphism (epimorphism, isomorphism). If there exists an isomorphism

of G onto H , then G and H are called isomorphic, and we write G ∼= H . The set of

all homomorphisms of G into H is denoted by Hom(G,H) . Similar definitions are left to

the reader for for the set End(G) of all endomorphisms of G and for Aut(G) the set of all

automorphisms of G .

The proof of the following lemma is easy, so we omit it.
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Lemma 1.21 Let α : G −→ H be a group homomorphism.

(a) There holds α(1G) = 1H and α(g−1) = (α(g))−1 for all g ∈ G .

(b) Im(α) := {α(g) | g ∈ G} is a subgroup of H .

(c) Ker(α) := {g ∈ G | α(g) = 1H} is a normal subgroup of G .

Now we are ready to state the homomorphism theorem:

Theorem 1.22 Let α : G −→ H be a group homomorphism. Then there holds

G/Ker(α) ∼= Im(α).

Proof : We are looking for an isomorphism γ : G/Ker(α) −→ Im(α) and define γ(gKer(α)) :=

α(g) . This is well-defined because for different g, g′ with gKer(α) = g′Ker(α) we have

g′−1g ∈ Ker(α) and hence immediately α(g′−1g) = 1H which implies α(g′) = α(g) .

The homomorphism property results from γ(gKer(α)hKer(α)) = γ(ghKer(α)) = α(gh) =

α(g)α(h) = γ(gKer(α))γ(hKer(α)) for all g, h ∈ G . Now obviously γ is surjective; re-

garding injectivity we keep in mind that γ(gKer(α)) = γ(g′Ker(α)) immediately implies

α(g) = α(g′) and therefore g′−1g ∈ Ker(α) . Hence, gKer(α) = g′Ker(α) . 2

Remark 1.23 (a) For a normal subgroup N of a group G we finally mention the so-

called natural epimorphism G −→ G/N, g 7→ gN .

(b) In light of (a) we can say that the above homomorphism theorem proves the existence

of γ , for which the following diagram commutes.:

α

γ
ν

G Im(α) ≤ H

G/Ker(α)
�
�
�
�
�
�
�
��3

?

-

Let us discuss two further isomorphy relations which will turn out to be very useful for our

later considerations.

Theorem 1.24 Let G be a group, and let U,N and M be subgroups of G .

(a) If N is normal in G , then so are N in UN and U ∩ N in U , and there holds

UN/N ∼= U/(U ∩N).
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(b) If M and N are normal in G and M ≤ N , then M is normal in N and there hold

N/M �G/M and (G/M)/(N/M) ∼= G/N.

Proof : (a) We consider the mapping

α : UN −→ U/(U ∩N), un 7→ u(N ∩ U),

which is certainly surjective provided we make sure that it is well-defined. For this keep

in mind that from un = u′n′ we get u−1u′ = nn′−1 ∈ U ∩ N and hence u(U ∩ N) =

u′(U ∩ N) . If we show that α is a homomorphism with Ker(α) = N then an application

of the homomorphism theorem will yield to our claim. α being multiplicative is easy to

verify. If now g = un ∈ Ker(α) for some u ∈ U and n ∈ N , then u ∈ U ∩ N ⊆ N

which means g ∈ N . If on the other hand g ∈ N , then, via g = 1g , we get immediately

α(g) = α(1) = U ∩N , which shows Ker(α) = N .

(b) We first observe that clearly M�N . If we find a group epimorphism β : G/M −→ G/N ,

the kernel of which is N/M then we get all claims by 1.21 and the homomorphism theorem.

Consider

β : G/M −→ G/N, gM 7→ gN.

This mapping is clearly well-defined because β(gM) = (gM)N = gN . Multiplicativity and

surjectivity are easy to verify as well. Let us finally determine Ker(β) . If N = β(gM) = gN ,

then certainly g ∈ N , which means gM ∈ N/M . If on the other hand gM ∈ N/M , then by

g ∈ N we immediately get β(gM) = gN = N , and hence we see that Ker(β) = N/M . 2

It might be instructive for a later application that the set of all normal subgroups of a group

together with its natural order (set inclusion) satisfies the so-called modular law, also called

the Dedekind identity in various places.

Proposition 1.25 Let A,B and C be normal subgroups of a group G with A ≤ C . Then

there holds

(AB) ∩ C = A(B ∩ C).

Proof : First observe that as A ≤ C and B∩C ≤ C we immediately get the trivial inclusion

A(B ∩ C) ≤ C . Furthermore we have A ≤ AB and B ∩ C ≤ B ≤ AB , which leads to

(AB) ∩ C ≥ A(B ∩ C) . For the converse inclusion let g ∈ (AB) ∩ C be given. Then

g = ab for suitable a ∈ A ∩ C and b ∈ B , and hence b = a−1g ∈ C . But this means that

b ∈ B ∩ C , by which we immediately obtain g = ab ∈ A(B ∩ C) . 2
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Definition 1.26 Let ((Gi, ·i, 1i))i∈I be a non-empty family of groups. The Cartesian prod-

uct ∏
i∈I

Gi = {(gi)i∈I | gi ∈ Gi for all i ∈ I}

obtains the structure of a group by coordinatewise multiplication. We write
∏

i∈I(Gi, ·i, 1i)
and more often

∏
i∈I Gi because there will be no danger of ambiguity. A prominent normal

subgroup in this group is the so-called direct sum⊕
i∈I

Gi := {(gi)i∈I | gi ∈ Gi and gi = 1i for all but finitely many i ∈ I}.

Note, that for a finite index set there is no difference between the direct product and the

direct sum of groups. Let us restrict ourselves to this case and consider the embedding

ιj : Gj −→
n∏
i=1

Gi

g 7→ (1, . . . , g, . . . , 1),

where g is in the j th position of the n -tuple. It is easy to verify the following statements.

Lemma 1.27 (a) Gj
∼= Im(ιj) �

∏n
i=1Gi for all j ∈ {1, . . . , n} .

(b) Im(ιj) ∩ (Im(ι1) · · · Im(ιj−1)Im(ιj+1) · · · Im(ιn)) = {(11, . . . , 1n)} for all j ∈ {1, . . . , n} .

This justifies the following definition.

Definition 1.28 Let N1, . . . , Nn be a family of normal subgroups of a group G . We call

G the (inner) product of the Ni , formally G =
⊕n

i=1Ni = N1 ⊕ . . .⊕Nn , if the following

hold:

(i) G = N1 · · ·Nn .

(ii) For all i ∈ {1, . . . , n} there holds Ni ∩ (N1 · · ·Ni−1Ni+1 · · ·Nn) = {1} .

According to this definition we see that the above (outer) product of a family of groups Gi

is the same as the inner product of the Im(ιi) . We now give another isomorphism relation

which the reader might extend immediately to a finite number of components.

Lemma 1.29 Let A1, A2, B1, B2 be normal subgroups of a group G with B1 ≤ A1 and

B2 ≤ A2 and finally A1 ∩A2 = {1} . Then B1 ⊕B2 is a normal subgroup in A1 ⊕A2 and

there holds

(A1 ⊕ A2)/(B1 ⊕B2) ∼= (A1/B1)⊕ (A2/B2).
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Proof : Consider the mapping

ϕ : A1 ⊕ A2 −→ A1/B1 ⊕ A2/B2, (a1, a2) 7→ (a1 +B1, a2 +B2).

We leave it to the reader to prove that this mapping is an epimorphism and that its kernel is

given by B1⊕B2 . Our claim then follows by application of the homomorphism theorem.2

1.2 Abelian Groups

In order to completely study the structure of all (finitely generated) Abelian groups, we first

need to understand their elementary components, namely the cyclic groups.

Definition 1.30 A group G is called cyclic, if it possesses a one-element generating system,

i.e. if there is g ∈ G such that G = 〈{g}〉 . Such an element will be called a generator of

G .

Examples 1.31 (a) The group (Z,+, 0) is an infinite cyclic group. It possesses the

generating elements 1 and −1 .

(b) For n ∈ N the group (Z/nZ,+, 0) is a cyclic group of order n . All elements k ∈ N
with gcd(k, n) = 1 are generating elements of Zn .

The foregoing list is complete, as we can see in theorem 1.33. To get prepared we have a

look at the following statement.

Lemma 1.32 The subgroups of (Z,+, 0) are of the form nZ = {nz | z ∈ Z} .

Proof : Let U be a subgroup of Z . If U 6= {0} then there exists a non-zero element n

of smallest absolute value in U . For every further element u ∈ U we apply the division

algorithm in Z and find u = kn + r for suitable k, r ∈ Z with |r| < |n| . This however

enforces r = 0 because r = u − kn ∈ U and n was smallest possible in terms of absolute

value. Hence we have u = kn . 2

Theorem 1.33 Let G be a cyclic group.

(a) If |G| =∞ , then G ∼= Z .

(b) If |G| <∞ , then G ∼= Z/nZ for a suitable n ∈ N .

Proof : We have G = {gi | i ∈ Z} for some generating element g of G . Consider the

mapping α : Z −→ G, i 7→ gi , which is an epimorphism, and distinguish two possible
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cases: If Ker(α) = {0} , then G ∼= Z . Otherwise we have according to the foregoing lemma

Ker(α) = nZ for some n ∈ N and the homomorphism theorem yields G ∼= Z/nZ . 2

Let us characterize all subgroups of a given cyclic group. For the case of infinite order we

already have done this in 1.32: every subgroup U of a cyclic group G = 〈{g}〉 of infinite

order is of the form U = 〈{gn}〉 for some fixed n ∈ N . The subgroups of a cyclic group of

finite order allow for a similarly simple characterization.

Proposition 1.34 Let G be a cyclic group of order n with generator g . For every divisor

d of n there exists exactly one (cyclic) subgroup of order d , and the list of these are all

subgroups of G .

Proof : We first observe that every subgroup of G must be cyclic, because G is isomorphic

to Z/nZ and this latter group as a quotient group of Z has only cyclic subgroups because

Z only has subgroups of this type. If now d is a divisor of n and c := n/d , then consider

the subgroup Ud := 〈{gc}〉 . As gcd = gn = 1 we see that the order of gc must divide

d . If b is the order of gc and b < d then 1 = gcb = gnb/d and as nb/d < n we would

have that the order of g is smaller than n , a contradiction. Hence b = d and so we see

|Ud| = d . Let now U = 〈{gk}〉 be some arbitrary subgroup of order d where the order of

gk is (clearly) d . Then we get from gkd = 1 immediately n | kd and hence kd = nm for

suitable m ∈ N . This however implies gk = g(n/d)m ∈ Ud and hence U ≤ Ud which implies

equality for cardinality reasons. 2

We have just understood that the structure of all cyclic group is completely known. We are

now interested in how far this knowledge can be used for the study of more general Abelian

groups. In order to do this we first focus on what are called free Abelian groups.

Definition 1.35 A group G is called free Abelian group, if G ∼=
⊕

i∈I Z for some index

set I , i.e. if G is a direct sum of infinite cyclic subgroups of G . A collection of generators

of these subgroups is called a basis of G . If |I| = r <∞ , we say G is of rank r .

In the following we will see that the rank of a free Abelian group is uniquely determined.

Lemma 1.36 If G is a free Abelian group of ranks r and s , then r = s .

Proof : Our claim of two different ranks r and s yields an isomorphism ϕ : Zr −→ Zs .

Let α and β be the natural embeddings of Zr (resp. Zs ) into the respective direct sums

of copies of Q . We will extend ϕ to a vector space isomorphism ϕ : Qr −→ Qs , in such a

way, that the following diagram commutes.
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Zr
ϕ
- Zs

α
? ?

β

Qr
ϕ
- Qs

We give here the steps that have to be performed as homework:

(a) Show that for every x ∈ Qn there exists z ∈ Z such that zx ∈ Zn .

(b) Define ϕ : Qn −→ Qn by x 7→ 1
z
ϕ(zx) where z is the number that you found in (a).

Show that this mapping is well-defined.

(c) Show that ϕ is additive and (hence) Z -linear; then show that ϕ is Q -linear.

(d) Show that ϕ is one-to-one. Show that ϕ is onto.

The mapping ϕ being a vector space isomorphism enforces that r = s , and hence we have

obtained our claim. 2

We will return to the following statement in the context of the theory of rings and modules.

Proposition 1.37 Every Abelian group is the homomorphic image of a free Abelian group.

Proof : Let {gi | i ∈ I} be a generating set for the Abelian group G . Then the mapping

π : Z(I) −→ G, (zi)i∈I 7→
∑

i∈I,zi 6=0

zigi

is the epimorphism that we are looking for. Note that by Z(I) we mean the direct sum

rather than the direct product! 2

The foregoing proposition has revealed in particular that every finitely generated Abelian

group is a homomorphic image of a free Abelian group of finite rank. The following statement

is one of the central results of this section. It will help to completely characterize the structure

of the finitely generated Abelian groups.

Theorem 1.38 Let F be a free Abelian group of rank r < ∞ and U a subgroup of

F . There exists a basis {b1, . . . , br} of F and coefficients ρ, ε1, . . . , ερ ∈ N , such that

{ε1b1, . . . , ερbρ} forms a basis of U . In particular U itself is a free Abelian group of rank

ρ ≤ r .
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Proof : We are going to proceed by induction on the rank r . For r = 1 there remains nothing

to show by an application of 1.32. Assume now that r > 1 and that the statement of this

theorem has already been shown for all free Abelian groups of rank < r . Let U be a non-

trivial subgroup, then the set of coefficients z ∈ Z\{0} which occur in the representation of

arbitrary elements of U with respect to an arbitrary basis of F is non-empty, and contains

an element ε1 that is minimal by absolute value. Attached to this element there is a basis

B0 := {w1, . . . , wr} of F and an element u0 ∈ U with u0 =
∑r

i=1 ziwi , and after possible

rearrangement of B0 we may assume that z1 = ε1 . We assume the order of the elements in

B0 to be fixed now, and vary the elements u ∈ U . Then we denote by z1(u) the coefficient

in the representation of u that stands in front of w1 . The set I0 = {z1(u) | u ∈ U} is a

subgroup of Z . This subgroup contains ε1 which is its minimal element by absolute value.

Consequently I0 = ε1Z . In the linear combination u0 = ε1w1 + z2w2 + . . . + zrwr we now

divide the occuring coefficients with remainder by ε1 and obtain

zi = qiε1 + si for i = 2, . . . , r and qi, si ∈ Z with 0 ≤ si < ε1.

Now also Bi := {w1 + qiwi, w2, . . . , wr} is again a basis of F , and with respect to this basis

our element u0 has the representation

u0 = ε1(w1 + qiwi) + z2w2 + . . .+ siwi + . . .+ zrwr.

Our assumption on ε1 to be minimal by absolute value now enforces that si = 0 for all

i = 2, . . . , r , and hence we have u0 = ε1b1 with b1 = w1 + q2w2 + . . . + qrwr . Now

{b1, w2, . . . , wr} is again a basis of F and because of I0 = Zε1 we first have

U ≤ Zε1b1 + Zw2 + . . .+ Zwr,

which yields

U = (Zε1b1 + Zw2 + . . .+ Zwr) ∩ U = Zε1b1 ⊕ (Zw2 + . . .+ Zwr) ∩ U,

by the Dedekind Identity. This shows, that we can write U = Zε1b1 ⊕ U1 where U1 is a

subgroup of the free Abelian group F1 := Zw2+. . .+Zwr that is of rank r−1 . By induction,

there exist ρ, ε2, . . . , ερ ∈ N , and a basis {c2, . . . , cr} of F1 , such that {ε2c2, . . . , ερcρ} is a

basis of U1 . All in all we obtain {ε1b1, ε2c2, . . . , ερcρ} to be a basis of U , and this completes

the induction. 2

We now come to the main result of this paragraph.

Theorem 1.39 Every finitely generated Abelian group decomposes as a direct sum of (finitely

many) cyclic subgroups.
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Proof : If α : F −→ G denotes the epimorphism that we found in 1.37 then we may assume

(as indicated earlier) that F is of finite rank r . By homomorphism theorem we then get

F/Ker(α) ∼= G . According to the previous theorem we then obtain a basis {b1, . . . , br} of

F and natural numbers ρ, ε1, . . . , ερ with ρ ≤ r such that {ε1b1, . . . , ερbρ} forms a basis of

Ker(α) . All in all we then obtain

G ∼= (
r⊕
i=1

Zbi)/(
ρ⊕
i=1

Zεibi) ∼= (

ρ⊕
i=1

Zbi/Zεibi) ⊕ (
r⊕

i=ρ+1

Zbi)

which was our claim. 2

From here there naturally arises the question in how far the foregoing decomposition can be

beautified. An important tool will be the following statement which is also known as the

Chinese Remainder Theorem. Its generalization from 2 components to general n components

is left as an exercise.

Proposition 1.40 Let n, k be coprime natural numbers. Then

Z/nkZ ∼= (Z/nZ)⊕ (Z/kN).

Proof : We consider the homomorphism

Z −→ Z/nZ⊕ Z/kZ, z 7→ (z + nZ, z + kZ).

Careful inspection shows that this is an epimorphism, and we compute its kernel as nZ ∩
kZ = nkZ , which finally yields the claim by homomorphism theorem. 2

Corollary 1.41 Every cyclic group of order n = pk11 · · · p
k`
` (where pi are different primes,

and ki are natural numbers) is isomorphic to a direct product of the cyclic groups Z/pkii Z
for i = 1, . . . , ` .

According to the previous statements we can arrange the cyclic groups occuring in the

decomposition of an arbitrary finitely generated Abelian group by suitable prime powers.

Corollary 1.42 Every finite Abelian group G is isomorphic to
⊕n

i=1 Upi with |Upi | = psii ,

and each of these Upi is of the form Upi
∼= Z/pk1i ⊕ . . .⊕ Z/pk`ii Z where

∑`i
j=1 kj = si .

Remark 1.43 It might be plausible that the decomposition that we just discussed is unique

up to isomorphism and arrangement of the components. We will omit a more careful proof

of this statement and finish our analysis with an example.

Example 1.44 Determine all non-isomorphic Abelian groups of order 9000 .
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1.3 p-Groups and Sylow’s Theorems

Definition 1.45 Let G be a group and M a set. An action of G on M is a group

homomorphism α : G −→ S(M) , where S(M) is the set of all permutations of M . We

call this action faithful if α is a monomorphism.

Examples 1.46 Let G be a group and g an element of G .

(a) The so-called left translation τg : G −→ G with x 7→ gx is a permutation on G .

Therefore τ : G −→ S(G) with g 7→ τg is an action of G on itself.

(b) The so-called conjugation cg : G −→ G with x 7→ gxg−1 is an automorphism (and

hence a permutation) of G . Hence c : G −→ Aut(G) ⊆ S(G) with g 7→ cg is an

action of G on itself.

In the following we will identify the image of an action with the group, since ambiguity will

not occur. This means we will write g(x) for α(g)(x) .

Definition 1.47 Let the group G act on the set M . The orbit of an element m ∈ M is

given by Gm := {g(m) | g ∈ G} , and the stabilizer of m in G is defined as Gm := {g ∈
G | g(m) = m} . Furthermore, F (g) will denote the set {m ∈ M | g(m) = m} , i.e. the set

of fixed points of an element g ∈ G .

The following statement rules the relation between certain cardinalities.

Lemma 1.48 Let the finite group G act on the set M . Then

|Gx| · |Gx| = |G|

for all x ∈M .

Proof : For given x, y ∈ M let G(x → y) := {g ∈ G | g(x) = y} denote the set of

permutations that carry x to y . For a particular permutation g with g(x) = y we claim

the identity G(x → y) = gGx . For a proof let h ∈ G(x → y) . Then g−1h(x) = x , and

hence g−1h ∈ Gx which shows that h ∈ gGx . If conversely h ∈ gGx then h = gu for some

u ∈ Gx and hence h(x) = gu(x) = g(x) = y which shows that h ∈ G(x → y) . Using this

identity we immediately find for given ∈M that

|G| = |{(g, y) ∈ G×M | g(x) = y}| =
∑
y∈Gx

|G(x→ y)| =
∑
y∈Gx

|Gx| = |Gx| · |Gx|,

which proves the claim. 2
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The following statement (Burnside’s lemma) gives information about the number of distinct

orbits of G in M .

Proposition 1.49 Let the finite group G act on the finite set M . The number ω of orbits

of G in M satisfies:

ω =
1

|G|
∑
g∈G

F (g).

In words: the number of all orbits is given by the average size of the fixed point sets which

belong to the elements of G .

Proof : We consider the set E := {(g, x) ∈ G ×M | g(x) = x} . Its cardinality is given by∑
g∈G |F (g)| which is easy to see by fixing the left entry of such a pair and then counting the

number of admissible right entries. Repeating the same procedure by first fixing the right

entry and counting the number of admissible left entries, we obtain |E| =
∑

x∈M |Gx| and

hence the identity ∑
g∈G

|F (g)| =
∑
x∈M

|Gx|.

We now partition the set M into orbits, i.e. we write M =
ω⋃
i=1

Gxi for suitable x1, . . . , xω ∈

M . Observing |Gz| = |Gxi | for each z ∈ Gxi we then find

∑
x∈M

|Gx| =
ω∑
i=1

|Gxi| · |Gxi | = ω |G|

and this finally yields the desired identity. 2

Example 1.50 We again look at the conjugation action that we introduced in 1.46, i.e. we

consider c : G −→ Aut(G) . For each x ∈ G the orbit Gx = {gxg−1 | g ∈ G} is also called

conjugacy class of x in G . It is a singleton if and only if gxg−1 = x for all g ∈ G , i.e. if

x is an element of the center C(G) of G . From this we immediately obtain the so-called

class equation of the group G :

|G| = |C(G)|+ (n1 + . . .+ nk),

where the ni denote the sizes of the non-singleton conjugacy classes. According to 1.48 we

have ni | |G| for all i = 1, . . . , k which has nice applications in combinatorial group theory.

Proposition 1.51 Let p be a prime and r ≥ 1 an integer. Then the center of a finite

group of order pr can never be trivial (singleton).
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Proof : The class equation for that group shows pr − (n1 + . . . + nk) = |C(G)| , where all

the ni are non-trivial divisors of pr . For this reason we find |C(G)| ≡ 0 (mod p) which

yields the claim. 2

We can improve the preceeding argumentation and give the following fundamental lemma

which will turn out to be a key step for all further statements.

Lemma 1.52 (Fundamental Lemma:) Let G be a group of order pn where p is a prime.

Assume G acts on a finite set M , and define M0 := {m ∈ M | g(m) = m for all g ∈ G}
to be the set of all fixed points of the action. Then there holds

|M0| ≡ |M | (mod p).

Proof : Certainly M is the disjoint union of all orbits of G in M . Similar to the class

equation we therefore have |M | = |M0| + |Gx1| + . . . + |Gxk| , where M0 is the union of

all one-element orbits and x1, . . . , xk are suitable representatives of all larger orbits. As

|Gxi| > 1 and |Gxi| | pn we then find p | |Gxi| , and this immediately leads to the fact that

|M | ≡ |M0| (mod p) . 2

Recalling Lagrange’s theorem we might find the following statement interesting.

Proposition 1.53 (Cauchy’s Theorem:) For a finite group G and a prime divisor p of |G|
there always exists an element g ∈ G with o(g) = p . In particular for each prime divisor

of the group order there exists a subgroup of that prime order.

Proof : Consider the set M := {(a1, . . . , ap) | ai ∈ G,
∏p

i=1 ai = 1} , for which certainly

|M | = |G|p−1 . On M we let Z/pZ act by cyclic permutation, i.e. we consider the action

Z/pZ −→ S(M), z 7→ shiftz

where shiftz : M −→ M, (a1, . . . , ap) 7→ (az+1, . . . , ap, a1, . . . , az) . This definition makes

sense because from 1 =
∏p

i=1 ai = (a1 · · · az)(az+1 · · · ap) we obtain via 1.2 immediately

(az+1 · · · ap)(a1 · · · az) = 1 . The set of fixed points under this action is given by M0 :=

{(a, . . . , a) | a ∈ G and ap = 1} . According to the fundamental lemma we have |M0| ≡ |M |
(mod p) , and because of (1, . . . , 1) ∈M0 we clearly have |M0| 6= 0 . For this reason we find

g ∈ G with g 6= 1 such that (g, . . . , g) ∈M0 and hence gp = 1 . 2

Definition 1.54 Let p be a prime. We say a group G is a p -group if the order of each of

its elements is a power of p .
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According to Lagrange’s theorem we know that every group of order pn must be a p -group.

The foregoing theorem of Cauchy gives the converse, i.e. we obtain the following corollary.

Corollary 1.55 A finite group is a p -group if and only its order is a power of p .

We are interested in the p -subgroups of finite groups. The most important statements

regarding this topic are Sylow’s theorems which we will prepare in the following.

Definition 1.56 A Sylow p -subgroup of a group G is a maximal p -subgroup of G .

Remark 1.57 The existence of Sylow p -subgroups does not require a proof in case of finite

groups. In the general case it can be proved by an application of Zorn’s lemma. We will

return to this issue in a later chapter.

The following statement is easy to prove and will be left as an exercise.

Lemma 1.58 If G is a group and p a prime number then every conjugate of a Sylow

p -subgroup is a Sylow p -subgroup. If G possesses just one Sylow p -subgroup then this

subgroup must be a normal subgroup of G .

The following statement and its consequences form the key for a proof of Sylow’s theorems.

Proposition 1.59 Let U be a p -subgroup of the finite group G and let NG(U) := {g ∈
G | gU = Ug} be its normalizer. Then there holds

[NG(U) : U ] ≡ [G : U ] (mod p).

Proof : We let U act on the set M := {gU | g ∈ G} of all left cosets of U in G by left

translation, i.e. u(gU) := ugU for all u ∈ U . The set M0 of all fixed points of this action

is given by

M0 = {gU | g ∈ G and ugU = gU for all u ∈ U}
= {gU | g ∈ G and g−1ug ∈ U for all u ∈ U}
= {gU | g ∈ NG(U)} = NG(U)/U.

Hence we have |M0| = [NG(U) : U ] and as |M | = [G : U ] we get the claim from the

fundamental lemma. 2

Corollary 1.60 If U is a p -subgroup of the finite group G with p | [G : U ] , then there

holds NG(U) > U .

20



Proof : This is an immediate consequence of the foregoing statement and taking into consid-

eration that |NG(U)| ≥ 1 > 0 . 2

We are now able to prove the famous Sylow theorems. They form a key component of non-

commutative finite group theorey and show the power of elementary combinatorial concepts

and methods in the context of Modern Algebra.

Theorem 1.61 (Sylow’s first theorem:) Let G be a group of order pnm where p is a prime

that does not divide m .

(a) For each i ∈ {0, . . . , n} there is a subgroup of G of order pi . For this reason G

possesses Sylow p -subgroups of order pn .

(b) Every subgroup of order pi of G is normal in a subgroup of order pi+1 of G for

i = 0, . . . , n− 1 .

Proof : We assume that n > 0 . According to Cauchy’s theorem G contains a subgroup

of order p . We will proceed by induction and assume that we have already shown that G

contains a subgroup U of order pi for an i ∈ {1, . . . , n− 1} . Then [G : U ] = pn−im , and

by 1.60 we find [NG(U) : U ] ≡ [G : U ] ≡ 0 (mod p) which means that NG(U)/U contains

a subgroup U ′/U of order p by Cauchy’s theorem. For this reason we see that U ′ is a

p -subgroup of order pi+1 of G namely by considering |U ′| = |U ′/U | · |U | and certainly U

is normal in U ′ . 2

We have just understood the existence of p -subgroups of a finite group, and that these p -

subgroups form maximal ascending chains of subgroups. The foregoing theorem has shown

in particular that the Sylow p -subgroups, i.e. the maximal p -subgroups are at the same time

the p -subgroups of maximal order. The following second theorem of Sylow will complement

our statements in 1.58 and discuss the relationship between the different Sylow p -subgroups.

Theorem 1.62 (Sylow’s second theorem:) If U is a p -subgroup of the finite group G and

P is a Sylow p -subgroup then there exists g ∈ G such that gUg−1 ⊆ P . In particular every

pair of Sylow p -subgroups is conjugated.

Proof : We let U act on the set M := {gP | g ∈ G} by left translation and like before we

have the set of fixed points under this action as M0 := {gP | g ∈ G, ugP = gP for all u ∈
U} = {gP | g ∈ G, g−1Ug ⊆ P} . According to the fundamental lemma we again have

|M0| ≡ |M | 6≡ 0 (mod p) , as by maximality of P the number p cannot divide [G : P ] .

Hence M0 is non-empty, i.e. there exists g ∈ G with g−1Ug ⊆ P . The second claim is an

immediate consequence. 2
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Sylow’s third theorem gives us some information about the number of different Sylow p -

subgroups of a finite group.

Theorem 1.63 (Sylow’s third theorem:) The number sp of Sylow p -subgroups of a finite

group G satisfies the equations

|G| ≡ 0 (mod sp) and sp ≡ 1 (mod p).

Proof : According to Sylow’s second theorem we know that sp is the length of the orbit of

a fixed Sylow p -subgroup under the conjugation action. From this we immediately obtain

via 1.48 that sp | |G| . On the set M := {Q | Q is a Sylow p -subgroup of G} we let a fixed

Sylow p -subgroup P act by conjugation. Again we consider the set M0 of fixed points of

this action and find M0 = {Q ∈ M | aQa−1 = Q for all a ∈ P} . This however means that

Q ∈ M0 if and only if P ≤ NG(Q) . But P,Q being Sylow p -subgroups of G are also

Sylow p -subgroups of NG(Q) . This implies, as Q is normal in NG(Q) , immediately by

1.62 equality of P and Q . For this reason we have M0 = {P} which means |M0| = 1 and

hence via |M | = sp we obtain the claim by application of the fundamental lemma. 2

1.4 Solvable Groups

In the preceeding sections we have discussed Abelian and non-Abelian groups, and our

discussions have shown how strong commutativity is, and how particular the class of all

Abelian group therefore is. For this reason there arises the question in how far there are

close relatives of the Abelian groups within the class of all groups. This will lead us to the

so-called solvable groups, a class of groups that play a central role in the question of how

certain algebraic equations can be solved by radicals.

Definition 1.64 A group G is called solvable if there is a chain

{1} = N0 ⊂ N1 ⊂ . . . ⊂ N`−1 ⊂ N` = G

of subgroups for which Ni−1 is normal in Ni and Ni/Ni−1 is Abelian for i = 1, . . . ` . Such

a chain will be called an Abelian normal series.

It is obvious that Abelian groups are always solvable. Furthermore non-Abelian simple

groups are certainly non-solvable.

We will now see in how far the class of all solvable group is closed under subgroups and

epimorphic images.
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Proposition 1.65 Every subgroup and every quotient group of a solvable group is solvable.

Proof : Let U be a subgroup of the solvable group G and let {1} = N0 ⊂ . . . ⊂ N` = G a

chain like that of 1.64, then the subgroups Mi := U ∩Ni form a chain of subgroups of U ,

in which U ∩Ni−1 is normal in U ∩Ni . Using theorem 1.24 we furthermore get

Mi/Mi−1 = (U ∩Ni)/(U ∩Ni−1)

= (U ∩Ni)/(U ∩Ni ∩Ni−1)

∼= ((U ∩Ni) ·Ni−1)/Ni−1,

where the latter group as a subgroup of Ni/Ni−1 must clearly be Abelian.

If now U is a normal subgroup of G then the above chain induces a new chain Mi :=

(UNi)/U of subgroups between U/U and G/U . As U is normal in G we see that U is

also normal in UNi for all i = 0, . . . , ` . Furthermore we can easily check that UNi−1 is

normal in UNi . Applying 1.24 to this situation we obtain first of all normality of UNi−1/U

in UNi/U and furthermore

(UNi/U)/(UNi−1/U) ∼= UNi/UNi−1

= (UNi−1Ni)/(UNi−1)

∼= Ni/(Ni ∩ (UNi−1).

According to the Dedekind identity the latter expression is isomorphic with Ni/(Ni−1(U ∩
Ni)) which as a quotient group of the Abelian group Ni/Ni−1 must again be Abelian. 2

More is true, as the following statement shows:

Proposition 1.66 Let N be a normal subgroup of the group G . Then G is solvable if and

only if N and G/N are solvable.

Proof : If G is solvable then by 1.65 we know that N and G/N are solvable. Conversely, if

N and G/N are solvable then we find Abelian normal series {1} = N0 ⊂ . . . ⊂ Nk = N of

N and {N} = Nk/N ⊂ . . . ⊂ Nl/N = G/N of G/N where because of (Ni/N)/(Ni−1/N) ∼=
Ni/Ni−1 (in case of i ≥ k+ 1 ), all Ni/Ni−1 are Abelian for (i = 1, . . . , `) . Hence we obtain

our claim. 2

The reader might be concerned by the question, how a normal series can be formed between

N and G , when we are only given by N/N and G/N . For this observe that there is a

bijection between the set of subgroups of G/N and the set of subgroups between N and

G . Denote the former interval by [N/N,G/N ] and the latter by [N,G] , then we introduce

ϕ : [N,G] −→ [N/N,G/N ], U 7→ U/N.
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This mapping indeed satisfies U ≤ V if and only if ϕ(U) ≤ ϕ(V ) , and will clarify the above

issue.

Proposition 1.67 If N is a normal subgroup of the solvable group G , then there exists an

Abelian normal series {1} = N0 ⊂ N1 ⊂ . . . ⊂ N`−1 ⊂ N` = G , that contains N , and in

which all Ni/Ni−1 are cyclic and of prime order.

Proof : We can proceed exactly as in the proof of 1.66, and then obtain a chain with finite

Abelian quotients. Between any two neighbours of this chain we put the normal series for

finite Abelian groups and then we have obtained the desired normal series. 2

The prime numbers that occur in the preceding theorem only depend on |G| . The according

cyclic groups can be understood as smallest components of the structure of finite solvable

groups. Such a decomposition in “atoms” can be proved in much more general context,

although the structure of these atoms may then be quite different (simple groups). The finite

solvable groups are exactly those in which the elementary components are cyclic groups of

prime order.

Proposition 1.68 Every finite p -group is solvable.

Proof : We proceed by induction on n where |G| = pn . For n = 0 or n = 1 we do not have

to show anything. For larger n we observe that {1} < C(G) ≤ G , because the center of a

p -group is never trivial. If C(G) = G , then we are done, as the group is already Abelian.

Otherwise C(G) and G/C(G) will be non-trivial p -groups of lower order. Hence C(G)

and G/C(G) are both solvable, and this proves solvability of G by application of 1.66. 2

We conclude this section with a remark of independent interest.

Remark 1.69 (a) The symmetric group Sn is not solvable for all n ≥ 5 . We will return

to this fact in the next chapter.

(b) A (deep) theorem by Feit and Thompson says that all groups of odd order are solvable.

2 Rings, Fields, and Field Extensions

In this chapter we will deal with classical highlights of the theory of field extensions and

their automorphisms. After discussing some preparational issues regarding polynomials we

will come to algebraic field extensions and give examples of algebraic proofs for geometric

impossibility results.
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2.1 Polynomial Rings

Definition 2.1 A unital ring is a quintuple (R,+, ·, 0, 1) usually denoted by R , in which

(R,+, 0) is an Abelian group and (R, ·, 1) is a monoid1 such that the following distributive

laws hold:

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

for all a, b, c ∈ R . Usually we omit the multiplication symbol · and write ab for a · b . The

ring R is called commutative, if (R, ·, 1) is a commutative monoid; it is called a domain, if

ab = 0 implies a = 0 or b = 0 . A commutative ring is called a field, if each of its non-zero

elements possesses a multiplicative inverse.

Examples 2.2 (a) Every field is a (commutative) domain.

(b) (Z,+, ·, 0, 1) is a commutative domain.

(c) (Z/nZ,+, ·, 0, 1) is a commutative ring, but not a domain in general.

(d) Mn(R) , the set of all (n × n) -matrices over the ring R is a ring again. This ring is

commutative (and a domain), if and only if R is commutative (and a domain) and

n = 1 .

Let R be a ring. On the set⊕
n∈N

R := {(rn)n∈N | rn ∈ R, rn = 0 for all but finitely many n ∈ N}

we define an addition + coordinatewise, and a multiplication ∗ by (an)n∈N ∗ (bn)n∈N =

(cn)n∈N with cn =
∑n

i=0 aibn−i . Abbreviating 0 := (0, 0, . . .) and 1 := (1, 0, . . .) , we easily

find that (
⊕

n∈NR,+, ∗,0,1) is a unital ring. Here the element x := (0, 1, 0, . . .) has the

property that xi = (0, 0, . . . , 1, 0, . . .) , where 1 resides at the i -th position. For this reason

the general element a := (an)n∈N can also be written in the form

a =
∑

i∈N,ai 6=0

aix
i.

All in all the following definition makes sense:

1A monoid is a semigroup with identity.
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Definition 2.3 Let R be a ring, then by the above motivation the set R[x] := {
∑n

i=0 rix
i |

n ∈ N, ri ∈ R} together with the operations

n∑
i=0

rix
i +

n∑
i=0

six
i :=

n∑
i=0

(ri + si)x
i

n∑
i=0

rix
i ∗

k∑
j=0

sjx
j :=

n+k∑
i=0

(
i∑

j=0

rjsi−j)x
i

is a unital ring which is called polynomial ring in the indeterminate x over R . The

polynomial ring R[x] is a (commutative) domain if and only if R is so. For f :=
∑n

i=0 fix
i ∈

R[x] with fn 6= 0 we say n is the degree of f , denoted by deg(f) and agree on the

convention that the degree of 0 is given by −∞ .

Lemma 2.4 Let R be a ring and f, g ∈ R[x] .

(a) We have deg(f + g) ≤ max(deg(f), deg(g)) , where deg(f) 6= deg(g) already implies

equality.

(b) We have the inequality deg(fg) ≤ deg(f) + deg(g) which turns into an equality, if

and only if R is a domain.

Proof : For (a) there is nothing to show and for (b) we observe that for f =
∑n

i=0 fix
i and

g =
∑k

j=0 gjx
j with fn 6= 0 6= gk we obtain via

fg =
n+k−1∑
i=0

(
i∑

j=0

fjgi−j)x
i + fngkx

n+k

immediately our claim. 2

Proposition 2.5 (Division Algorithm) Let F be a field and f, g ∈ F [x] with g 6= 0 . Then

there are unique polynomials q, r ∈ F [x] with deg(r) < deg(g) uand f = qg + r .

Proof : If deg(f) < deg(g) then there is nothing to show because we can choose q = 0 and

r = f . Otherwise we proceed by induction and define n = deg(f) and k = deg(g) . We

then find that

f ′ := f − fn
gk
xn−kg

is a polynomial of properly smaller degree than f . Accordingly we can apply the induction

hypothesis and obtain f ′ = q′g + r with suitable q′, r ∈ F [x] of the desired form. All in all
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we therefore have

f =
fn
gk
xn−kg + q′g + r = qg + r,

where we have set q = fn
gk
xn−k + q′ , and this yields the claim. Regarding uniqueness we

observe that if f = qg+r = q′g+r′ , then (q−q′)g = r′−r and hence deg(g) > deg(r′−r) =

deg((q − q′)g) = deg(q − q′) + deg(g) . This clearly implies r′ − r = 0 and hence we have

q − q′ = 0 . 2

The property that we have just studied has led to a name for an entire class of rings:

Definition 2.6 A commutative domain R is called Euclidean, if there is a mapping ϕ :

R \ {0} −→ N with the following properties.

(i) ϕ(ab) ≥ ϕ(a) for all a, b ∈ R \ {0} .

(ii) For all a, b ∈ R \ {0} there exist q, r ∈ R such that a = qb + r with r = 0 or

ϕ(r) < ϕ(b) .

Examples 2.7 (a) Clearly, (Z,+, ·, 0, 1) equipped with the absolute value function is a

Euclidean domain. The division algorithm is the usual algorithm that we know from

school.

(b) If F is a field, then we see by 2.5 that F [x] equipped with the deg -function is a

Euclidean domain.

(c) The set R = {a+ ib ∈ C | a, b ∈ Z} together with the operations inherited from C is

a commutative domain. Defining ϕ : R \ {0} −→ N with a+ ib 7→ a2 + b2 , we again

find that R is a Euclidean domain. It is also called the ring of Gaussian numbers.

We will see soon that Euclidean domains have strong properties. To get prepared we need

the following definition and lemmas.

Definition 2.8 Let (R,+, ·, 0, 1) be a ring and S a subset of R . Then S is called left

ideal of R if the following hold.

(i) (S,+, 0) is a subgroup of (R,+, 0) .

(ii) For all s ∈ S and r ∈ R there holds rs ∈ S .

In an analogous way we can define right ideals as those subsets which are subgroups of

(R,+, 0) such that

(ii*) for all s ∈ S and r ∈ R there holds sr ∈ S .
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If S satisfies both conditions (ii) and (ii*), then S is called a two-sided ideal. If S = Rr

for some r ∈ R then S is generated by a single element and we call S a principal left ideal.

Analogously we talk about right principal ideal and we clearly see that in a commutative

ring these distinctions are not an issue. If in a ring R every left ideal is principal, then we

call R a left principal ideal ring.

Obviously 0 = R0 = 0R and R = R1 = 1R are always left and right principal ideals of a

ring R . Additionally with every family (Si)i∈I of left ideals of a ring R also
⋂
i∈I Si and

hence ∑
i∈I

Si := 〈
⋃
i∈I

Si〉

=
⋂
{S | S ≤ RR and S ⊇

⋃
i∈I

Si}

= {
∑
i∈I0

si | si ∈ Si where I0 a finite subset of I},

are left ideals of R . It might be intuitively clear that not every ideal of a ring is necessar-

ily a principal ideal. However, looking for counterexamples one should however avoid the

Euclidean domains as the following proposition shows:

Proposition 2.9 Every Euclidean domain is a principal ideal domain.

Proof : Let R be a Euclidean domain and let ϕ : R \ {0} −→ N be the attached function.

If S 6= {0} is an ideal of R then there exists a nonzero element s0 ∈ S on which ϕ takes

its minimum. We have Rs0 ⊆ S and wish to show equality. Let s ∈ S be an arbitrary

element. By definition there exist elements q, r ∈ R with s = qs0 + r where ϕ(r) < ϕ(s0)

or r = 0 . We have however r = s−qs0 ∈ S , which by the above minimality enforces r = 0 .

Hence we see s = qs0 and consequently S ⊆ Rs0 which had to be shown. 2

Examples 2.10 (a) All ideals of Z are of the form nZ where n ∈ N . We have seen this

earlier in the chapter dealing with Abelian and cyclic groups.

(b) The polynomial ring F [x] over the field F is a principal ideal ring. The ideals of F [x]

are therefore of the form F [x]f for suitable f ∈ F [x] .

For the further discussion we need to introduce the following two notions.

Definition 2.11 Let R be a commutative unital ring and a, b elements of R . Then a is

called a divisor of b , denoted by a | b if there exists c ∈ R such that ac = b . The divisors
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of 1 are called units of R and they form a group which is often denoted by R× . We call

an element p ∈ R \ R× irreducible if it does not possess any proper divisor, i.e. for which

ab = p always implies a ∈ R× or b ∈ R× .

Definition 2.12 Let R be a ring and S a two-sided ideal of R . On the (additive) quotient

group R/S we define a multiplication by

(r + S) ∗ (r′ + S) := rr′ + S,

by which R/S obtains the structure of a unital ring with identity 1 + S and zero-element

S . We call R/S the residue ring of R modulo S .

We strongly recommend the reader to check the foregoing statement and determine the point

where the two-sidedness of the ideal S is needed.

Definition 2.13 A left ideal S of a ring R is called maximal if for all left ideals S ′ with

S ⊂ S ′ ⊆ R there follows S ′ = R .

Lemma 2.14 A two-sided ideal S of a ring R is a maximal left ideal if and only if R/S

is a division ring. It will then also be maximal as a right ideal.

Proof : The only thing we have to do is to prove that every nonzero element of R/S possesses

a multiplicative inverse. Let r + X be a non-zero element of R/S . Then r 6∈ S which

shows that Rr+ S is a left ideal that properly contains S . If we assume S to be maximal

as a left ideal then be immediately get Rr + S = R and this means we find r′ ∈ R and

s ∈ S with r′r+s = 1 . From this we get (r′+S)(r+S) = r′r+S = 1+S which shows that

r + S has a left inverse. In the same way we can show that r′ + S possesses a left inverse

in R/S , and this shows that r′ + S is invertible on two sides (as is r + S ). Conversely, if

T is a left ideal with S ⊂ T ⊆ R , and t ∈ T \S , i.e. the element t+S is non-zero in R/S

then using the division ring property of R/S we obtain t′ ∈ R with (t′+S)(t+S) = 1+S .

This implies T = T + S ⊇ Rt + S = R + S = R , and hence we see that S is a maximal

ideal. 2

The following statement will be important also in a later section.

Proposition 2.15 If p is an element of a commutative principal ideal domain R , then

R/(pR) is a field if and only if p is irreducible.

Proof : According to the foregoing statement we only have to check if pR is maximal if and

only if p is irreducible. If p is reducible then there exist non-units a, b ∈ R with ab = p
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and then we obviously have Rp = Rab ⊆ Rb ⊆ R . If we assume Rab = Rb here then we

would have s ∈ R with sab = b and hence (sa − 1)b = 0 which already implies a ∈ R× .

In a similar way we can show that Rb 6= R , and consequently Rp is not maximal. If now

p is irreducible and S an ideal of R with Rp ⊂ S ⊆ R . Then there exists s ∈ R with

S = Rs and furthermore a ∈ R with p = as . As p is assumed to be irreducible we have

Rp 6= Rs and we can exclude a being a unit of R . Hence s is a unit of R and we see that

S = Rs = R . 2

Let us come to the question in how far arbitrary elements of a commutative ring R can

be factorized using irreducible elements of R . For polynomial rings we can give an answer

which can even be generalized to Euclidean rings and, moreover, to commutative principal

ideal domains. The following lemma serves as a preparation.

Lemma 2.16 Let F be a field and a, a1, . . . , an ∈ F [x] and p an irreducible element of

F [x] .

(a) There holds p | a or pF [x] + aF [x] = F [x] .

(b) If p | (a1 · · · an) then there exists i ∈ {1, . . . , n} with p | ai .

Proof : (a) We know already that pF [x] is a maximal ideal of F [x] . For this reason we

have aF [x] ⊆ pF [x] or aF [x] + pF [x] = F [x] . If the latter is not true then a ∈ pF [x] and

hence a = pr , which means p | a .

(b) We need a proof only for n = 2 , because the general statement then follows by induction.

Assume p | (a1a2) and p is not a divisor of a1 . Then via (a) we get pF [x]+a1F [x] = F [x] ,

which means there exist polynomials r, s ∈ F [x] with pr+ a1s = 1 . Multiplying this by a2

we find pra2 + sa1a2 = a2 where p clearly divides each summand of the left side. For this

reason we have p | a2 and this was the claim. 2

Theorem 2.17 If F is a field then F [x] is a so-called unique factorization domain, i.e. ev-

ery nonzero element f ∈ F [x] is a product of a unit and a finite number of monic irreducible

elements of F [x] . These factors are uniquely determined up to arrangement.

Proof : We will prove the first part by induction on the degree of the polynomial. If deg(f) =

0 , then f is a constant and hence a unit of F [x] which means there is nothing to show. For

deg(f) ≥ 1 we distinguish two cases: First, if f is already irreducible then we can factor

out its leading coefficient, and we obtain a factorization of the desired type. Otherwise we

know that f is a product of two polynomials of properly smaller degree and this yields

according to the induction hypothesis that these factors enjoy a factorization of the desired
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type. Putting these factorizations together we arrive at a factorization of f of the desired

type. To show uniqueness let f = ap1 · · · pn = bq1 · · · qk with monic irreducible polynomials

pi and qj and units a, b ∈ F . We again proceed by induction on the degree of f and

first observe that for deg(f) = 0 , we find n = k = 0 and there remains nothing to show.

If f is not a constant then n ≥ 1 and k ≥ 1 and from ap1 · · · pn = bq1 · · · qk we obtain

by applicaion of the foregoing lemma that p1|bq1 · · · qk and hence without loss of generality

p1|q1 . As these polynomials are monic we see that p1 = q1 . Dividing both sides by p1 we

obtain ap2 · · · pn = bq2 · · · qk , and as this is of properly smaller degree we apply the induction

hypothesis and see that a = b and up to arrangement pi = qi for i = 1, . . . , k where k = n .

All in all this finishes the proof. 2

We now take care of the interesting question, how we can decide if a given polynomial, say

over the field Q , is irreducible. This will lead to two important irreducibility criteria, which

we will discuss in the following.

Definition 2.18 A polynomial f =
∑n

i=0 fixi ∈ Z[x] is called primitive, if gcd(f0, . . . , fn) =

1 .

An immediate observation is the following lemma:

Lemma 2.19 If f, g ∈ Z[x] are primitive, then so is fg .

Proof : Primitivity of a (nonzero) polynomial h ∈ Z[x] means that the image h of h modulo

p is nonzero for all primes p . Assume that f, g are primitive and that fg is not. Then

there exists a prime p ∈ N such that fg = 0 . But moding out p is multiplicative, which

means we have f g = 0 in Zp[x] and this enforces f = 0 or g = 0 , a contradiction. Hence,

fg is primitive. 2

Theorem 2.20 (Gauss’ Lemma) Let f ∈ Z[x] be a primitive polynomial. If f = gh with

g, h ∈ Q[x] of positive degree, then there also exist G,H ∈ Z[x] of positive degree with

f = GH .

Proof : Suppose that f = gh as descrbed in the hypothesis. Let b be the least common

multiples of the denominators of coefficients in g and let a be the greatest common divisor

of the numerators of coefficients in g . Then g = a
b
G where G is a primitive integer

polynomial. Doing the same with h = c
d
H we end up with the equality

f =
a

b
G
c

d
H
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and this can be rewritten as bdf = acGH . Knowing that f is primitive, we have bd as

the greatest common divisor of coefficients of bdf . By the previous lemma also GH is

primitive, and hence ac is the greatest common divisor of acGH . This yields ac = bd and

consquently f = GH . 2

The foregoing result can be used to derive what is called Eisenstein’s irreducibility criterion:

Theorem 2.21 Let f ∈ Z[x] be a polynomial of positive degree n . If there exists a prime

number p ∈ N with p | fi for all i = 0, . . . , n − 1 but p 6 | fn and p2 6 | f0 then f is

irreducible over Q .

Proof : Dividing out the greatest common divisor of the coefficients of f would not have any

effect on whether or not the assumption about p is true because of p 6 | fn . For that reason

we will assume that f is primitive, and that p is a prime number satisfying the hypothesis.

Assuming that f = gh with g of degree r and h of degree s we first find f0 = g0h0 and

hence p | g0h0 but p2 6 | g0h0 . This implies that p | g0 or p | h0 , but not both. Without

loss of generality we assume p | g0 . If now all of the gi were divisible by p then p | fn ,

which is not possible. Hence, let k be the smallest subscript for which p 6 | gk and consider

fk = g0hk + g1hk−1 + . . .+ gk−1h1 + gkh0.

By the choice of k our prime p divides each of the g0, . . . , gk−1 , and as k < n we know

that p | fk . But then by subtraction we find that p | gkh0 which eventually enforces p | h0 ,

a contradiction. This shows that f is irreducible over the rational numbers. 2

Example 2.22 Consider the polynomial f = 10− 15x + 25x2 − 7x4 . Then p = 5 divides

all coefficients of f except the leading one, and p2 does not divide 10 . For this reason f

is irreducible over Q .

Definition 2.23 Let F be a field and f =
∑n

i=0 fix
i a polynomial over F . An element

a ∈ F is called a zero of f , if f(a) :=
∑n

i=0 fia
i = 0 .

It is easy to check that substituting x by an element of F induces a ring homomorphism

F [x] −→ F, f 7→ f(a) . Clearly we have (f + g)(a) = f(a) + g(a) and (fg)(a) = f(a)g(a) .

This leads to the following statement.

Proposition 2.24 Let F be a field and f ∈ F [x] a polynomial. Then a ∈ F is a zero of

f if and only if there exists g ∈ F [x] with f = (x− a)g .
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Proof : If f = (x − a)g then certainly a is a zero of f . If now a is a zero of f then we

apply the division algorithm to obtain g, r ∈ F [x] with f = g(x− a) + r , where r must be

a constant which is forced to be zero by substitution by a . 2

Corollary 2.25 Let F be a field and f ∈ F [x] nonzero. Then f possesses at most deg(f)

zeros (including multiple zeros) in F .

Proof : This can be shown by induction on deg(f) . For deg(f) = 0 there is nothing to

show. If deg(f) ≥ 1 and a ∈ F is a zero of f then according to the foregoing proposition

we have f = (x − a)g where deg(g) = deg(f) − 1 . For this reason we see by induction

hyptothesis that g has at most deg(f)− 1 zeros which finally leads to the claim. 2

The following statement will be used in a later application.

Definition 2.26 Let F be a field. We call the mapping

D : F [x] −→ F [x],
n∑
i=0

fix
i 7→

n∑
i=1

ifix
i−1

the formal derivative. Higher derivatives Dk are inductively defined by D0 = id and

Dk+1 = D ◦Dk .

The proof of the following lemma is left as an exercise.

Lemma 2.27 The formal derivative is an F -endomorphim of the F -vectorspace F [x] . It

satisfies the product rule D(fg) = (Df)g + f(Dg) and there holds deg(Df) ≤ deg(f) − 1

where we have equality if, char(F ) does not divide deg(f) .

Definition 2.28 Let F be a field and a ∈ F and f, g ∈ F [x] . If f = (x − a)mg with

g(a) 6= 0 , then m is called the multiplicity of a as a zero of f .

Our final statement shows the connection between multiple zeros and the behaviour of the

formal derivative.

Proposition 2.29 Let F be a field of characteristic 0 , and a an element of F . For a

polynomial f ∈ F [x] of positive degree the following are equivalent:

(a) f = (x− a)mg with g(a) 6= 0 .

(b) (Dif)(a) = 0 for i = 0, . . . ,m− 1 and (Dmf)(a) 6= 0 .

33



Proof : It can be shown by application of the product rule that

Dkf = (x− a)m−kgk

with gk(a) 6= 0 for 0 ≤ k ≤ m , This immediately gives the desired equivalence. 2

2.2 Fields and Field Extensions

A field is a commutative division ring. If such a division ring is non-commutative then people

usually call it a skew-field.

Definition 2.30 A subset F of a field G which forms a field with respect to the inherited

operations is called a subfield of G . The field G is called an extension of F . A pair of

fields F and G , in which G is an extension of F is usually denoted by G : F . If the

kernel of the ring homomorphism Z −→ G, z 7→ z · 1 is given by {0} then we say G is of

characteristic zero. Otherwise it will necessarily be given by pZ where p is a prime, and

then G is said to be of characteristic p .

Examples 2.31 (a) Q is a subfield of R and R is a subfield of C . All these fields are

of characteristic 0 .

(b) Z/pZ is a field of characteristic p for all primes p . In particular for every prime there

exists a field that has the given prime as its characteristic.

The intersection of an arbitrary family of subfields of a field is again a subfield. For this

reason every field possesses a smallest subfield P (F ) which is called the prime field of F .

Lemma 2.32 Let F be a field of characteristic p .

(a) p = 0 if and only if P (F ) ∼= Q .

(b) p is a nonzero prime if and only if P (F ) ∼= Z/pZ .

Proof : It is easy to check that R := {z · 1 | z ∈ Z} is a subring of P (F ) . Now char(F ) =

p 6= 0 is equivalent to R ∼= Z/pZ and this is equivalent to R = P (F ) , since R itself is a

field. In case char(F ) = 0 we know that this is equivalent to R ∼= Z , and the smallest field

in which R is contained must be isomorphic with Q . This exactly means P (F ) ∼= Q . 2

The following characterization of the prime field might be of independent interest.

Proposition 2.33 If F is a field of characteristic p 6= 0 , then P (F ) = {x ∈ F | xp = x} .
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Proof : We know that we have P (F ) ∼= Z/pZ . In this field we have xp−1 = 1 for all x 6= 0 ,

which means that xp = x for all x ∈ F . Consequently we know that P (F ) ⊆ {x ∈ F |
xp = x} . On the other hand {x ∈ F | xp = x} is the set of all zeros of the polynomial

xp − x ∈ F [x] , and this set cannot have more than p elements. For this reason the claim

follows from cardinality arguments. 2

Our knowledge regarding prime fields can be used to find out more about the structure of

arbitrary fields.

Proposition 2.34 Every finite field is a finite (dimensional) vector space over its prime

field. In particular there can only exist finite fields of prime power order.

Regarding the multiplicative group of a finite field we find the following interesting statement.

We will return to this later.

Proposition 2.35 Every finite subgroup of the multiplicative group of a field is cyclic. In

particular the multiplicative group of a finite field itself is cyclic.

Proof : Let F be a finite field and G a finite subgroup of its multiplicative group F× .

According to the main theorem on finite abelian group we know that G decomposes as a

direct sum of abelian pi -groups where the pi are suitable primes. If we show that these

components are cyclic then our claim follows by the Chinese Remainder Theorem. Let Gp

be the maximal direct summand belonging to the prime p . Every element of Gp has order

a power of p and certainly there is an element z ∈ Gp that has maximal order, say pr . All

other elements b ∈ Gp must be of order ps where s might vary between 0 and r . From

this we get bp
r

= (bp
s
)p

r−s
= 1 for all b ∈ Gp , and consequently all b ∈ Gp are zeros of the

polynomial xp
r − 1 ∈ F [x] . According to our earlier results however there are at most pr

such zeros. For this reason we see that Gp = 〈z〉 as claimed. 2

Definition 2.36 If G : F is a field extension then the F -dimension of G is called the

degree of the extension, denoted by [G : F ] . If [G : F ] is finite then we say G : F is finite.

Extensions of degree 2 are called quadratic extensions.

Examples 2.37 (a) [C : R] = 2 which means that C is a quadratic extension of R .

(b) Every finite field is a finite extension of its prime field.

Definition 2.38 If G : F is a field extension then a field H with G ⊇ H ⊇ F is called

intermediate field of G : F .
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Intermediate fields satisfy the following degree formula, a formula which rules wide areas of

field theory.

Proposition 2.39 Let H be an intermediate field of the extension G : F . Then [G : F ] =

[G : H] · [H : F ] . If [G : F ] is finite then [G : H] and [H : F ] are divisors of [G : F ] , and

in particular [G : F ] = [H : F ] enforces G = H .

Proof : If (αi)i∈I is an H -basis of G and (βj)j∈J is an F -basis of H , then a simple

computation shows that (αiβj)i∈I,j∈J is an F -basis of G . This implies all of our claims if

the given extensions are finite. For infinite degrees we agree on the formulae ∞· n =∞ for

all n ∈ N ∪ {∞} , and then the claims are again true.

2.3 Algebraic Extensions

Definition 2.40 Let G : F be a field extension. An element a ∈ G is called algebraic over

F if there is a polynomial f ∈ F [x] such that f(a) = 0 . Otherwise we call a transcendental.

Proposition 2.41 Let G : F be a field extension and a ∈ G algebraic over F .

(a) There is a unique monic polynomial of minimal degree ma ∈ F [x] with ma(a) = 0 .

(b) ma is irreducible and a divisor of every polynomial f ∈ F [x] that satisfies f(a) = 0 .

(c) If f ∈ F [x] is monic and irreducible with f(a) = 0 then f = ma .

Proof : We again consider the substitution homomorphism Φa : F [x] −→ G, f 7→ f(a) .

Assuming that a is algebraic immediately implies that Φ cannot be injective, in other

words, Ker(Φa) 6= {0} . According to our preparations regarding polynomial rings we then

know that Ker(Φa) = F [x]ma , where ma is unique up to a constant factor. Assuming ma

to be monic then makes it unique. Certainly ma divides every polynomial f ∈ F [x] that

satisfies f(a) = 0 because such a polynomial is contained in Ker(Φa) . If ma = fg for

f, g ∈ F [x] , then we would have 0 = ma(a) = f(a)g(a) and hence f(a) = 0 or g(a) = 0 ,

which enforced ma|f or ma|g and deg(f) = 0 or deg(g) = 0 . Hence ma is irreducible.

Finally, if f ∈ F [x] is irreducible with f(a) = 0 , then ma | f and hence f = cma by which

c immediately results to be a constant polynomial. Assuming f to be monic then shows

that f = ma as claimed. 2

Definition 2.42 The polynomial ma that we have defined in 2.41 is called the minimal

polynomial of a over F . The degree of F (a) : F is given by deg(ma) and sometimes it is

called the degree of a .
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Remark 2.43 If H is an intermediate field of G : F and a is algebraic over F , then a is

also algebraic over H because F [x] ⊆ H[x] . However the minimal polynomial of a over H

might be different from the minimal polynomial of a over F . It is however clear that the

minimal polynomial of a over H is a divisor of the minimal polynomial over F because of

ma ∈ H[x] and our statements in 2.41.

In the following we would like to see what the field extension of a single algebraic element

looks like. To get prepared, let G : F be a field extensions and a ∈ G be an algebraic element

of G with minimal polynomial ma ∈ F [x] . Consider the substitution homomorphism

Φa : F [x] −→ G, f 7→ f(a).

We have already understood that its kernel is given by F [x]ma , and for convenience we

denote its image by F [a] := {f(a) | f ∈ F [x]} . By homomorphy we then have the natural

isomorphism

F [x]/F [x]ma
∼= F [a].

As we learned earlier the irreducibility of ma shows that F [a] is a subfield of G that clearly

contains F and also a .

Theorem 2.44 Let G : F be a field extension and a ∈ G an algebraic element. Then F [a]

is the smallest subfield of G that contains F and a .

Proof : The smallest subfield of G that contains F and a is clearly given by

F (a) :=
⋂
{H | H subfield of G and F ∪ {a} ⊆ H},

and we wish to show that F (a) = F [a] . We have seen above that F [a] is a subfield of

G that contains F and also a . For this reason we clearly have F (a) ⊆ F [a] . On the

other hand F (a) clearly contains all elements of G that are of the form
∑n

i=0 fia
i where

fi ∈ F and n ∈ N . In other words F (a) contains f(a) for all f ∈ F [x] , and this shows

F (a) ⊇ F [a] . 2

Another nice characterization of algebraic elements is the following:

Corollary 2.45 Let G : F be a field extension. An element a ∈ G is algebraic if and only

if F (a) : F is a finite extension.

Proof : If a is not algebraic then a is trancendental, and we know by 2.40 the kernel of the

substitution homomorphism Φa is trivial, and hence F [a] ∼= F [x] . For this reason we find
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dimF (F (a)) ≥ dimF (F [a]) = dimF (F [x]) =∞ . If on the other hand a is algebraic then we

know [F (a) : F ] = [F [a] : F ] = deg(ma) <∞ . 2

Definition 2.46 A field extension G : F is called algebraic if every a ∈ G is algebraic over

F . Otherwise we call it transcendental.

Note that the existence of a single transcendental element in the extension makes us call the

extension transcendental.

Proposition 2.47 Let G : F be a field extension.

(a) If [G : F ] <∞ , then G : F is algebraic.

(b) [G : F ] < ∞ if and only if there exist element a1, . . . , an ∈ G such that G =

F ({a1, . . . , an}) .

Proof : (a) If a ∈ G is transcendental over F , then we immediately have [G : F ] ≥ [F (a) :

F ] =∞ , by which G : F cannot be finite any more.

If [G : F ] = n and {a1, . . . , an} is an F -basis of algebraic elements of G then we certainly

have G = F ({a1, . . . , an}) . Conversely, if G = F ({a1, . . . , an}) with algebraic elements

a1, . . . , an ∈ G , then by 2.43 each of the ai is also algebraic over F ({a1, . . . , ai−1}) for

i = 2, . . . , n , and hence [F ({a1, . . . , ai}) : F ({a1, . . . , ai−1)] <∞ for all i = 2, . . . , n . From

this we inductively obtain [F ({a1, . . . , an}) : F ] <∞ . 2

Remark 2.48 Note that the converse of 2.47(a) does not hold in general, i.e. there exist

algebraic field extensions of infinite degree. For algebraic a in G : F the statement in

2.47(b) justifies saying that F ({a}) : F is a simple algebraic extension.

We would like to know now if the set of all algebraic elements of a field extension allows a

characterization.

Proposition 2.49 Let G : F be a field extensions. Then the set {a ∈ G | a algebraic over F}
forms an intermediate field of G : F .

Proof : If a, b ∈ G are algebraic over F , then the elements a+b, a−b, ab, and a/b (if b 6= 0)

are contained in F ({a, b}) , which is algebraic by 2.47(b). For this reason these elements are

clearly algebraic over F . 2

The following statement is of interest.
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Proposition 2.50 Let G : F and H : G be field extensions. Then G : F and H : G are

algebraic if and only if H : F is so.

Proof : If H : F is algebraic then certainly G : F and also H : G according to the

definition and what we have learnt so far. Conversely, if H : G is algebraic and h ∈ H

is an arbitary element then there exists a polynomial g ∈ G[x] with g(h) = 0 . The

polynomial g is of the form g =
∑n

i=0 gix
i where gi ∈ G and it is clear that h is also alge-

braic over F ({g0, . . . , gn}) . According to the degree formula we get from this immediately

[F ({h, g0, . . . , gn}) : F ] = [F ({h, g0, . . . , gn}) : F ({g0, . . . , gn})] · [F ({g0, . . . , gn}) : F ] which

is finite and consequently shows that h is algebraic over F . 2

2.4 Ruler and Compass Constructions

In the Euclidean plane we are interested in solving certain geometric problems, or to prove

the impossibility of a solution. In the following we will give three impressing examples

showing that Abstract Algebra can be used to determine if geometric solutions of a problem

exist or not.

Given R2 we will distinguish a unit line by marking its start and end point. Using this unit

line we are interested to construct further points by exclusively using a ruler and a compass.

Doing so we are restricted to the following rules:

(i) If P and Q are points that we already constructed then we may use the ruler in order

to draw the (infinite) line through these points.

(ii) If P is a constructed point and d is a constructed distance (the distance between

two constructed points) then we may use the compass in order to draw the circle with

radius d around P .

(iii) All intersection points of objects that we got by rule (i) and/or rule (ii) are accepted

to be constructible points.

To ease our life we assign coordinates and denote the starting point of our initial line by

(0, 0) and its ending point by (1, 0) . Elementary ruler and compass manipulations then

show that we can (at least theoretically) construct every point (n, 0) where n ∈ Z . We

can do more: having a copy of Z in the plane we can put a perpendicular line in the point

(0, 0) and then put another copy of Z on that line, i.e. we have two axes of a coordinate
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system. Moreover, this shows that (again at least theoretically) every point (a, b) ∈ Z2 is

constructible by ruler and compass.

Calling an element a ∈ R constructible if the point (a, 0) is so in our Euclidean plane, we

immediately see that two elements a, b ∈ R are constructible if the point (a, b) ∈ R2 can

be constructed.

Our goal is to determine which real numbers are constructible.

Lemma 2.51 If a, b ∈ R are constructible the so are a + b, a − b, ab and a/b provided

b 6= 0 .

Proof : Addition and subtraction of given numbers a, b only require a single ruler and

compass step as the following sketch might clarify.

b

a a+ ba− b

Regarding multiplication we need to remember the ray theorems, which immediately make

the following sketches plausible.

Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

b

1

a ab

Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

b

a

1
b
a
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This completes the proof. 2

Corollary 2.52 The set of all points in R2 which can be constructed by the rules that we

mentioned form an intermediate field of R : Q .

Proof : By the above observations the set of all these points forms a field. As this field

contains Z , It must then also contain Q . Hence it is an intermeidate field of R : Q as

claimed. 2

The following statement is of high importance.

Lemma 2.53 If a ∈ R+ is constructible then so is
√
a .

Proof : Given a rectangular triangle we can draw the height. Then our knowledge from

elementary geometry says that the product of the hypotenuse section is the square of the

height. A square root can then be constructed using the following sketch idea:

a
−1

√
a

Given a ∈ R+ assume without loss of generality that a ≥ 1 . Then construct the center

(a− 1)/2 on the x -axis and use the radius (a + 1)/2 in order to draw a circle around the

given center. This circle touches −1 and a on the x -axis and it intersects the y -axis in

the point
√
a . This shows the claim. 2

Let us denote the intermediate field of R : Q that can be constructed by our geometric rules

by L ,
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If (x1, y1) and (x2, y2) are constructible points in the plane then the line through these

points is given by G = {(x, y) ∈ R2 | (x2 − x1)(y− y1) = (y2 − y1)(x− x1)} . This means all

points on G satisfy an equation of the form ux + vy + w = 0 where u, v, w ∈ L . A circle

C with constructible center (x1, y1) and constructible radius r ∈ L is algebraically given

by C = {(x, y) ∈ R | (y− y1)2 + (x−x1)2− r2 = 0} . Investigating the intersections of these

types of point sets we have to distinguish a few cases:

line-line intersections: The intersection point of the two lines described by the equations

ux+vy+w = 0 and u′x+v′y+w′ = 0 is just their simultaneous solution and hence possesses

coordinates in Q(u, v, w, u′, v′, w′) ⊆ L . This means the intersection of constructible lines

does not generate points beyond the scope of these lines.

line-circle intersections: If the line G is described by the equation ux+vy+w = 0 and

the circle C is described by the equation (x−c)2+(y−d)2−e2 = 0 where u, v, w, c, d, e ∈ L ,

and if these two objects intersect, then a solution of the line equation (wlog. v 6= 0 ) leads

to y = −ux
v
− w

v
. If we substitute y in the circle equation by this value, we obtain the

quadratic equation (x − c)2 + (ux
v

+ w
v

+ d)2 − e2 = 0 which means an equation of type

Ax2 +Bx+C = 0 , where A,B,C ∈ L . According to the formula that we know we find the

solution

x1/2 = − B

2A
±
√

B2

4A2
− 4C

A

which means also these elements are contained in L .

circle-circle intersections: Algebraically the interesection of two circles is equivalent

with the intersection of a line with a circle, hence we can reduce this case to what we have

just learnt.

Theorem 2.54 An element a ∈ R is constructible if and only if there is a series of elements

(βi)i=1,...,n and an according tower of field extensions Q = L0 ⊆ . . . ⊆ Ln ⊆ R such that

Li+1 = Li(
√
βi+1) for i = 0, . . . , n− 1 and a ∈ Ln .

Proof : If a is constructible then according to the above analysis we add at most squares

from construction step to construction step. If a is constructed after finitely many steps,

then we immediately obtain the desired tower of field extensions. Conversely, let

Q = L0 ⊆ . . . ⊆ Ln ⊆ R
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be a tower of field extensions of the mentioned form. If n = 0 then there is nothing to show.

If we assume that all elements of Ln−1 are constructible for some n ≥ 1 then the elements

of Ln are of the form x+y
√
βn with x, y ∈ Ln−1 . According to our analysis these numbers

are constructible as well, and hence we obtain our claim. 2

Corollary 2.55 If an element a ∈ R is constructible then there is an intermediate field H

of R : Q with a ∈ H and [H : Q] = 2n for suitable n ∈ N .

Corollary 2.56 (a) Transcendental elements in R : Q are not constructible.

(b) If a ∈ R is algebraic over Q , and [Q(a) : Q] is not a power of 2 then a is not

constructible.

Proof : It is quite obvious that only algebraic numbers can be constructed. If now a is

algebraic then there is an intermediate field H of R : Q with [H : Q] = 2n for suitable

n ∈ N and we have a ∈ H . According to the degree formula we see however that [Q(a) : Q]

is a divisor of [H : Q] and this yields the claim. 2

Proposition 2.57 Given a cube it is not possible to construct a new cube (using ruler and

compass) that has double the volume of the given one.

Proof : Without loss of generality our given cube has side length 1 and the problem is

to construct a new cube of side length 3
√

2 . This element however is of degree 3 over Q
because x3 − 2 is irreducible in Q[x] . Hence we have just proved the impossibility of a

geometric solution. 2

Proposition 2.58 Squaring the circle by ruler and compass is impossible.

Proof : Given a circle with radius of a unit length. Its area is, as we know from school,

given by π . Constructing a square with this area is the same as solving the equation

x2 = π . Given that we know that π (and hence
√
π ) are transcendental, this is impossible

by application of 2.56. 2

Everybody knows how to construct a 60◦ angle just by using a compass. This shows that

it is possible to trisect the angle of 180◦ . As we see in the following this geometric task is

impossible in general. We will prove this by giving an example of a (constructible) angle

that does not allow a trisection by ruler and compass.

Proposition 2.59 It is not possible in general to trisect a given angle just using ruler and

compass.
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Proof : We will show that the 60◦ -angle cannot be trisected. Assume that we could tri-

sect it then we would in particular be able to construct the cosine of a 20◦ angle. Using

trigonometric identities we see that

cos(3α) = 4 cos3(α)− 3 cos(α).

For α = 20◦ this yields by substitution a = cos(α) the equation

4a3 − 3a =
1

2
,

which means that a is a zero of the rational polynomial f(x) = 8x3 − 6x− 1 . Substituting

x := y+1
2

we are equivalently looking for a zero of the polynomial g(y) = y3 + 3y2− 3 . This

polynomial does not possess rational zeros, and hence is irreducible over Q as the following

consideration proves: if p
q

were a rational zero of g in lowest terms, then we would have

p3 + 3pq − 3q3 = 0 , which means

p3 ≡ 0 (mod 3)

and hence also p ≡ 0 (mod 3) . For this reason we would have p = 3k for suitable

k ∈ Z and this gives us the equation 27k3 + 27k2q − 3q3 = 0 , and consequently q3 ≡ 0

(mod 3) . Likewise this leads to q ≡ 0 (mod 3) which induces a contradiction to p
q

being

in lowest terms. This shows that [Q(cos(20◦)) : Q] = 3 , and hence we see the impossibility

of construction. 2

Remark 2.60 If we had started with more than just a unit line, say a parabola or an even

more complicated curve, and if we had more tools than just ruler and compass then it would

be clear that our results had changed considerably. The exercises will contain some material

regarding this question.
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