

Time Series Analysis Dummy Variables

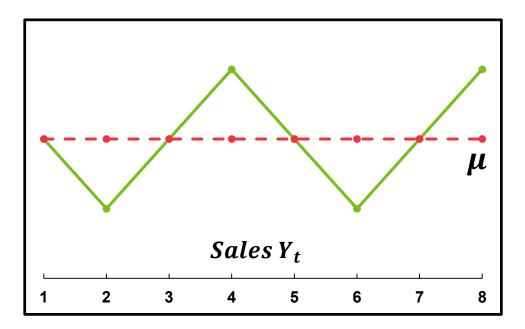
Tomi Seppälä Department of Information and Service Management

Dummy variables (aka. Indicator variables or Binary variables) Seasonality:

Example: Four (4) seasons	1, 2,	3, 4	(Quarters)
---------------------------	-------	------	------------

Time	Data quarter	D ₁	D ₂	D ₃	D ₄	Constant
1	1	1	0	0	0	1
2	2	0	1	0	0	1
3	3	0	0	1	0	1
4	4	0	0	0	1	1
5	1	1	0	0	0	1
6	2	0	1	0	0	1
7	3	0	0	1	0	1
8	4	0	0	0	1	1

Categorical variable equivalent to 4 dummies (mutually exclusive)



Model:

$$Y_t = \mu + \gamma_1 D_1 + \gamma_2 D_2 + \gamma_3 D_3 + \gamma_4 D_4 + u_t$$

Complete linear dependence \rightarrow We cannot estimate

$$\mu = D_1 + D_2 + D_3 + D_4$$

There are two alternatives

Alternative 1:

 $Y = \mu + \gamma_1 D_1 + \gamma_2 D_2 + \gamma_3 D_3 + u$

- Drop one of the **D**'s from the analysis
- Season 4 is the reference group (D_4) against which the other groups are compared
- Regression analysis table (ANOVA) gives t- and p-values compared to group 4:

$$\begin{array}{l} H_0: \gamma_i = 0 \\ H_1: \gamma_i \neq 0 \\ \text{separate individual tests for each } i = 1, 2, 3 \\ \text{(Pairwise comparison between group } i \text{ and } 4\text{)} \\ \text{Overall seasonality test: is there seasonality in the data:} \\ \text{Joint test} \qquad H_0: \gamma_1 = \gamma_2 = \gamma_3 = 0 \\ H_1: \gamma_1 \neq 0 \text{ or } \gamma_2 \neq 0 \text{ or } \underbrace{\gamma_3 \neq 0}_{\gamma_3 \neq 0} \\ \text{No seasonality} \\ \text{ALWAYS DO OVERALL SEASONALITY TEST FIRST BEFORE ANY} \\ \text{INDIVIDUAL TESTS!} \\ \end{array}$$

<u>Alternative 2: Keep all the dummies, but drop μ </u>

 $Y_t = \gamma_1 D_1 + \gamma_2 D_2 + \gamma_3 D_3 + \gamma_4 D_4 + u_t$

No constant included

Joint test for overall seasonality (ANOVA to test means)

 $H_0: \gamma_1 = \gamma_2 = \gamma_3 = \gamma_4$ $H_1: \gamma_i \neq \gamma_j \text{ for some } i \neq j$

Possible pairwise tests; for example:

 $H_0: \gamma_1 = \gamma_2$ $H_0: \gamma_1 \neq \gamma_2$

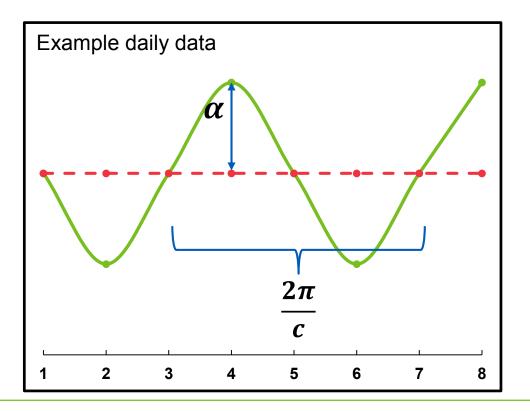
Another way to deal with seasonality

sin(0) = 0 $sin(\frac{\pi}{2}) = 1$ $sin(\pi) = 0$ $sin\left(\frac{3\pi}{2}\right) = -1$ $sin(2\pi) = 0$

Length of period:

 $\operatorname{ct}=2\pi \rightarrow t=\frac{2\pi}{c}$

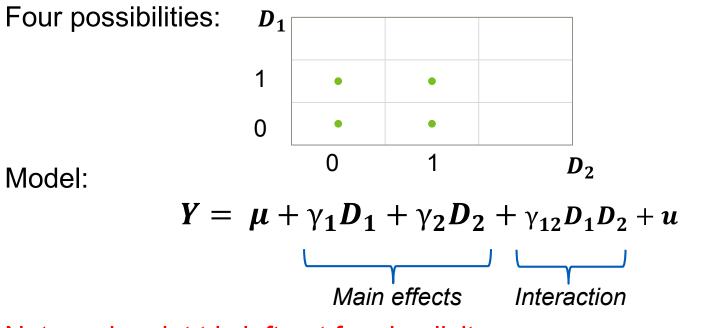
$$V_t = \mu + \alpha \cdot \sin(ct)$$



Interaction effects

Two separate dummy variables D_1 , D_2 , which could happen at the same time (or not). Note: these cannot be seasonal dummies, since they would be mutually exclusive

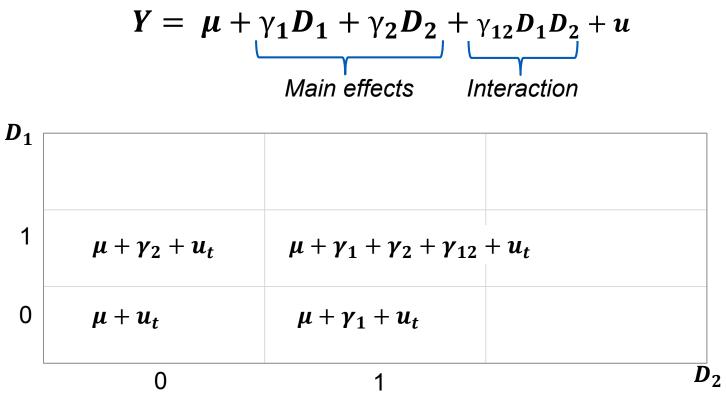
Interaction effect is D_1D_2 (obtained with multiplying)



Note: subscript t is left out for simplicity

Interaction effects

Model:

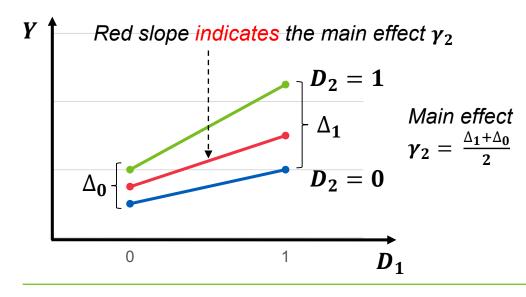


Interaction effects

Test for interaction:

$$H_0: \gamma_{12} = \mathbf{0}$$
$$H_1: \gamma_{12} \neq \mathbf{0}$$

Test if the slopes are the same



Interpretation:

- 1. γ_{12} is the difference in slopes or alternatively
- 2. γ_{12} is the difference $\Delta_1 \Delta_0$
- 3. If there is interaction, the effect on Y when changing D_1 from 0 to 1 is different for those with $D_2=0$ compared to those with $D_2=1$. i.e. green and blue slopes are the same

