

Lecture 8: Non-premixed combustion

AAE-E3030 Numerical Modeling of Multiphase Flows 2019

Combustion, Warnatz, J., Maas, U., and Dibble, R. W., 2nd edition, ISBN 3-540-65228-0, 1999.

Turbulent Combustion, Norbert Peters, ISBN 0-951-66082-3, 2000.

D.Sc (Tech) Ossi Kaario

Bunsen burner

Premixed Bunsen flame

Diffusion ---- premixed combustion

Fundamental gas flames

Aalto University School of Engineering

Non-premixed flame

M. Hupa 2000

VI VI I200°C VI I200°C I1400°C I200°C I200°C 800°C 800°C 660°C I000°C 800°C 20°C 20°C III III 800°C III I000°C I000°C 20°C

Relative temperatures in a candle flame from thermocouple measurements: I - Body of candle, II - Wick, III - Dark zone, IV - C_2 and Cl zone, V - Luminous zone, VI - Main reaction zone

Diffusion flame

Diffusion flame chemistry

 $C(s) + O_2 \rightarrow CO_2$

APProperties of premixed and diffusion Aalto University Combustion processes

Premixed

Diffusion

- -No soot
- -Poor radiator
- -Chemical reactions determine reaction rate -flame speed can be determined

-Sooting flame -Good raditive heat transfer -Mixing determine reaction rate

-Cannot define burning velocity

-applications (stove, furnace..)-safety issues

Discuss

Discuss with the person next to you

- **1.** Differences between premixed and non-premixed flames
- **2.** Where does fuel-air mixing take place for each flame type
- **3.** Why the other flame type is sooting

Stoichiometry

- Stoichiometric: Fuel-Oxygen ratio such that both are entirely consumed when combustion to CO_2 and H_2O is completed
- Global reaction describing combustion of a single component hydrocarbon fuel C_mH_n (subscript F for fuel)

$$v'_F C_m H_n + v'_{O_2} O_2 = v''_{CO_2} C O_2 + v''_{H_2 O} H_2 O$$
(1)

- Stoichiometric coefficients are

$$v'_F = 1$$
 $v'_{O_2} = m + \frac{n}{4}$ $v''_{CO_2} = m$ $v''_{H_2O} = \frac{n}{2}$

where $v_F' = 1$ may be chosen arbitrarily to unity

A^{}** Stoichiometric Mass Ratio

Aalto University School of Engineering

• Mole number ratio for stoichiometric condition

$$\frac{n_{O_{2,u}}}{n_{F_{u}}} | st = \frac{v'_{O_{2}}}{v'_{F}}$$

or in terms of mass fractions

$$\frac{Y_{O_{2,u}}}{Y_{F,u}}|st = \frac{v'_{O_2}W_{O_2}}{v'_F W_F} = v$$

where v is called the stoichiometric mass ratio

- Typical value: Methane v = 4
- Mass ratio v : Fuel and oxidixer are both consumed when combustion is completed

- Mixture fraction quantifies local the state of mixing in non-• premixed combustion.
- Consider two separate feed streams of ٠
 - Fuel •
 - Oxidizer (air, pure oxygen) ٠
- Streams mix and burn •

- In general does not contain oxidizer •
- Oxidizer stream •

Fuel stream

٠

•

Generally does not contain fuel •

The mixture fraction

Aalto University School of Engineering

- In the following:
 - Fuel stream: Subscript 1
 - Oxidizer stream: Subscript 2
- Defining mixture fraction
- Mass fraction of the fuel stream in the mixture:

$$Z = \frac{m_1}{m_1 + m_2}$$

where m_1 and m_2 are the local masses originating from the individual streams.

- Mixture fraction is always between zero and one
- Fuel stream: Z=1
- Oxidizer stream: Z=0

Mixture fraction field in a spray case

The mixture fraction

Aalto University School of Engineering

Turbulent non-premixed jet flame

A¹¹ The mixture fraction

- Mass fraction of fuel in the fuel stream:
- Mass fraction of oxygen in the oxidizer stream:

 $Y_{F,1}$ Y_{O_22}

• If we assume equal diffusivities of fuel, oxygen, and inert substances, the local mass fraction $Y_{F,u}$ of fuel in the unburned mixture is related to the mixture fraction Z as

 $Y_{F,u} = Y_{F,1}Z$

• Similarly, since (1-Z) represents the mass fraction of the oxidizer stream locally in the unburned mixture, we obtain the local mass fraction of oxygen as

$$Y_{O_{2,u}} = Y_{O_22}(1-Z)$$
 ($Y_{O_22} = 0.232$ for air)

A¹¹ The mixture fraction

Aalto University School of Engineering

• In a single step global reaction

$$v'_F C_m H_n + v'_{O_2} O_2 = v''_{CO_2} CO_2 + v''_{H_2O} H_2O$$

the reaction equation relates the changes of mass fractions of oxygen dY_{O_2} and fuel dY_F to each other by

$$\frac{dY_{O_2}}{v'_{O_2}W_{O_2}} = \frac{dY_F}{v'_F W_F}$$
 where W_i :s are the molecular weights.

• This may be integrated to obtain

$$\nu Y_F - Y_{O_2} = \nu Y_{F,u} - Y_{O_2 u} \tag{2}$$

The mass fractions Y_F and Y_{O_2} correspond to any state of combustion between the unburned and the burned state.

The mixture fraction

Aalto University School of Engineering

• Combining $vY_F - Y_{O_2} = vY_{F,u} - Y_{O_2u}$ with $Y_{F,u} = Y_{F,1}Z$

and
$$Y_{O_2 u} = Y_{O_2 2}(1-Z)$$

• We get

$$Z = \frac{vY_F - Y_{O_2} + Y_{O_22}}{vY_{F,1} + Y_{O_22}} \qquad v = \frac{v'_{O_2}w_{O_2}}{v'_F w_F}$$

which relates the mixture fraction Z to the mass fractions of Y_F and Y_{O_2}

 For stoichiometric composition, the first two terms have to cancel out

$$Z_{st} = \frac{Y_{O_22}}{vY_{F,1} + Y_{O_22}} \text{ or } Z_{st} = \left(1 + v\frac{Y_{F,1}}{Y_{O_22}}\right)^{-1}$$

APPRIATION Relation of mixture fraction and Auto University School of Engineering

• Fuel-air equivalence ratio is

$$\phi = \frac{Y_{F,u}/Y_{O_{2,u}}}{\left(Y_{F,u}/Y_{O_{2,u}}\right)_{st}} = \frac{\nu Y_{F,u}}{Y_{O_{2,u}}}$$

• Introducing $Y_{F,u} = Y_{F,1}Z$, $Y_{O_2u} = Y_{O_22}(1-Z)$, and

$$Z_{st} = \left(1 + v \frac{Y_{F,1}}{Y_{O_22}}\right)^{-1}$$

• We obtain a relationship between Z and ϕ as

$$\phi = \frac{Z}{1-Z} \frac{(1-Z_{st})}{Z_{st}}$$

This suggests that mixture fraction can be interpreted as a normalized fuel-air equivalence ratio

- In CFD, simple equation for the calculation of Z: we only need to know the N_2 field
- Often accurate enough is the following mixture fraction definition

$$Z = \frac{Y_{N_2} - Y_{N_22}}{Y_{N_{2_fuel}} - Y_{N_22}}$$

 Y_{N_22} Initial N2 massfraction

 $Y_{N_2_fuel}$ N2 massfraction in the fuel

Additional material Additional material Mixture fraction definition by Bilger

• Let Z_C, Z_H , and Z_O denote the element mass fractions of C, H, and O, and W_C, W_H , and W_O their molecular weights, respectively. Setting the stoichiometric coefficient v'_F of the global reaction (1) to unity, we obtain the element mass fractions

$$\frac{Z_C}{mW_C} = \frac{Z_H}{nW_H} = \frac{Y_{F,u}}{W_F}, \quad Z_O = Y_{O_{2,u}}$$

where
$$Z_j = \frac{m_i}{m} = \sum_{1}^{n} \frac{a_{ij}W_j}{W_i}Y_i$$

 a_{ij} is the number of atoms of element j in a molecule of species i

 W_j is the molecular weight of atom j

Additional material Additional material Mixture fraction definition by Bilger

• We can now formulate a coupling function

$$\beta = \frac{Z_C}{mW_C} + \frac{Z_H}{nW_H} - 2\frac{Z_O}{v'_{O_2}W_{O_2}}$$

which vanishes under stoichiometric combustion, and corresponds to the original definition of Burke and Schumann (1928) of a conserved scalar. It can be normalized between 0 and 1

$$Z = \frac{\beta - \beta_2}{\beta_1 - \beta_2} \quad \text{or}$$

$$Z = \frac{Z_C / (mW_C) + Z_H / (nW_H) + 2((Y_{O_2,2} - Z_O) / (v'_{O_2} W_{O_2}))}{Z_{C,1} / (mW_C) + Z_{H,1} / (nW_H) + 2(Y_{O_2,2} / (v'_{O_2} W_{O_2}))}$$

• This formula is often used to determine mixture fraction experiments or numerical results.

Discuss

Discuss and calculate with the person next to you

- 1. For Methane combustion, what is Z_{st} ? Assume $Y_{F,1} = 1$ and $Y_{O_22} = 0.232$
- **2**. If $Y_{N_22} = 0.77$ and $Y_{N_2} = 0.73$ what is Z ?
- **3**. What is mixture fraction ? What does it mean ?

A¹¹ Diffusion flame structure at Complete conversion

• Stoichiometric composition

$$Z_{st} = \frac{Y_{O_22}}{\nu Y_{F,1} + Y_{O_22}}$$

- If $Z < Z_{st}$ then the mixture is lean (fuel is deficient)
- Combustion terminates when $Y_{F_h} = 0$
- Remaining oxygen mass fraction is calculated from

$$Z = \frac{vY_F - Y_{O_2} + Y_{O_22}}{vY_{F,1} + Y_{O_22}}$$

Diffusion flame structure at complete conversion School of Engineering

$$Y_{O_2} = Y_{O_{2,2}} \left(1 - \frac{Z}{Z_{st}} \right), \quad Y_F = 0, \text{ for } Z \le Z_{st}$$

• $Z > Z_{st}$ mixture is rich (oxygen deficient)

Aalto University

• Combustion terminates when all oxygen is consumed $Y_{O_{2,b}} = 0$

$$Y_F = Y_{F,1} \frac{Z - Z_{st}}{1 - Z_{st}}, \qquad Y_{O_2} = 0, \text{ for } Z \ge Z_{st}$$

A Diffusion flame structure at Complete conversion

$$Y_{CO_2} = Y_{CO_2,st} \frac{Z}{Z_{st}}$$
; $Y_{H_2O} = Y_{H_2O,st} \frac{Z}{Z_{st}}$ $Z \le Z_{st}$

$$Y_{CO_2} = Y_{CO_2, st} \frac{1-Z}{1-Z_{st}} ; Y_{H_2O} = Y_{H_2O, st} \frac{1-Z}{1-Z_{st}} \qquad Z \ge Z_{st}$$

where

$$Y_{CO_2,st} = Y_{F,1}Z_{st}\frac{mW_{CO_2}}{W_F} \qquad Y_{H_2O,st} = Y_{F,1}Z_{st}\frac{nW_{H_2O}}{W_F}$$

A^{}** The Burke-Schumann solution

Aalto University School of Engineering

Concerning temperature, if all c_p:s are assumed equal and constant, pressure is constant, Le=1 for all species, and heat transfer due to radiation is neglected, temperature equation may be written

$$\rho \frac{\partial T}{\partial t} + \rho u \cdot \nabla T = \nabla \cdot (\rho D \nabla T) + w_T \qquad w_T = -\frac{1}{c_p} \sum_{i=0}^{n} h_i w_i$$

• Then heat release rate w_T may be written as $w_T = \frac{Q}{c_p}w$, where

w is the Arrhenius reaction rate and Q is the fuel heating value.

• Under these assumptions, temperature is also a piecewise linear function of Z:

$$T_{u}(Z) + \frac{QY_{F,1}}{c_{p}v'_{F}W_{F}}Z, \qquad Z \leq Z_{st}$$

$$T_{u}(Z) + \frac{QY_{O,2}}{c_{p}v'_{O_{2}}W_{O_{2}}}(1-Z), \qquad Z \geq Z_{st}$$

$$T_{u}(Z) = T_{2} + Z(T_{1} - T_{2})$$

Temperature, O₂ and Fuel profiles assuming fast chemistry and equal mass diffusivities

A¹¹ The Burke-Schumann solution

School of Engineering

Temperature profile for methane-air combustion with realistic values for c_p , Q, and initial temperatures.

A^{}** The Equilibrium solution

Aalto University School of Engineering

Methane-air combustion with fast-chemistry assumption but with reversible reactions (N. Peters, 2006)

A¹¹ The Equilibrium solution

Aalto University School of Engineering

Burke-Schuman solution for a 2D gas jet (Navier-Stokes solver)

- There are different kinds of simplifications that can be done to model combustion. Here, three modeling approaches are presented.
- 1. Mixed is burned –approach. Typically eddy break-up type of models. Single step chemistry which basically neglegts the chemistry totally.
- 2. Flamelet model based on Flamelet Generated Manifold (FGM)
- **3.** Direct Chemistry

A Turbulent Mixing Limited Approach

Eddy Break-Up approach

$$S_{Fu} = C_m \overline{\rho} \frac{\varepsilon}{k} \min\left(\widetilde{m}_{Fu}, \frac{\widetilde{m}_{O_2}}{r}, \frac{\widetilde{m}_{Pr}}{1+r}\right)$$

A Turbulent Mixing Limited Approach

 The Laminar and Turbulent Characteristic Time (LaTCT) combustion model

$$\tau_{c} = \tau_{ch} + f \tau_{\varepsilon}$$

$$\tau_{\varepsilon} = C_{M} \overline{\rho} \frac{\varepsilon}{k} \min\left(\widetilde{m}_{Fuel}, \frac{\widetilde{m}_{O_{2}}}{r}\right) \quad \tau_{ch} = A^{-1} [Fuel]^{0.75} [O_{2}]^{-1.5} \exp\left(\frac{E}{RT}\right)$$

$$f = (1 - e^{-p})/0.632 \qquad p = \frac{\widetilde{m}_{CO_{2}} + \widetilde{m}_{H_{2}O} + \widetilde{m}_{CO} + \widetilde{m}_{H2}}{1 - \widetilde{m}_{N_{2}}}$$
Reaction rate
$$\frac{dY_{i}}{dt} \sim \frac{1}{\tau_{c}}$$

 The model can be used, in principle, when chemistry is either very fast compared to mixing or when chemistry is very slow compared to mixing

A Some results with the Eddy Breakup Aalto University model

A^{''}Flamelet Generated Manifolds (FGM)

Aalto University School of Engineering

Consider a simplyfied combustion configuration

$$CH_4 + 2O_2 + N_2 \rightarrow CO_2 + 2H_2O + N_2$$

Flamelet:

- Laminar
- 1-dimensional
- Detailed computation of transport processes
- Detailed chemical reactions
- Full set of species and reactions

A^{''}Flamelet Generated Manifolds (FGM)

Aalto University School of Engineering

> • Consider a simplyfied combustion configuration $CH_4 + 2O_2 + N_2 \rightarrow CO_2 + 2H_2O + N_2$

A^{''}Flamelet Generated Manifolds (FGM)

Aalto University School of Engineering

> • Consider a simplyfied combustion configuration $CH_4 + 2O_2 + N_2 \rightarrow CO_2 + 2H_2O + N_2$

A["]Flamelet Generated Manifolds (FGM)

Aalto University School of Engineering

- Combustion computation with FGM
- Conservation equations
 - Mass ρ
 - Momentum *u*
 - Enthalpy h
 - $-CO_2$
- Chemical reaction rate for CO2 and all other species mass fractions are obtained from the flamelet solution

FGM Tables

Chemistry parametrized by mixture fraction Z and the reaction progress variable C

• Objectives:

- Investigate the ignition characteristics and early flame structure using Large Eddy Simulation and Flamelet Generated Manifold (FGM)
- **Case: ECN Spray A** (Engine Combustion Network)
- Constant volume combustion vessel T = 900 K
- P_amb 6MPa Rhoo_amb = 22:8 kg/m3
- 15% O2 Pinj = 150MPa

Computational Methods

- Flow solver
 - Implicit Large Eddy Simulation
 - Lagrangian Particle Tracking
 - OpenFOAM 2.2.x
 - Advanced thermodynamic/transport models (i.e. Wilke/Mathur mixture models)
- Flamelet Generated Manifolds (FGM)
 - Tabulated chemistry model
 - State of combustion is parametrized by a few control variables (here, mixture fraction and a reaction progress variable)
 - Chemistry data obtained from 1D igniting/steady counterflow diffusion flames (i.e. flamelets)
 - Detailed chemical kinetics (253 species, 1437 reactions)

Δ"

Large Eddy Simulation of Spray Combustion

A. Wehrfritz, H. Kahila, V. Vuorinen, O. Kaario Visualization: Jyrki Hokkanen (CSC)

Computational methods

- Open source CFD code: OpenFOAM
- Turbulence modeling: Large Eddy Simulation (LES)
- Combustion modeling: Flamelet Generated Manifolds (FGM)

• Model size:

- 12 million computational cells
- Temporal resolution: 40ns
- Computational cost:
 - 9200 processor hours
 - 192 processors at CSC's supercomputers
- Visualization:
 - Volume rendering at CSC's supercomputers

Figure 8: Spatial $\rm CH_2O$ and OH fields for the 100 MPa case at $t=1.5\,\rm ms.$

H. Kahila et al., 2017

Direct Chemistry

Methane Combustion 167

School of Engineering

Table 5.4 (continued)

Methane chemistry

- Detailed methane (CH₄) • chemistry involves 53 species and 325 reaction (GRI 3.0 mechanism)
- Or reduced n-dodecane . mechanism by Ranzi et al. Involving 96 species and 993 reactions

No.	Reaction	Forward Rate Coefficient ^a		
		A	ь	E
Reacti	ons Added in Update from Version 2.11 to	Version 3.0 (co	ontinued)	
287	$OH + HO_2 \rightarrow O_2 + H_2O$	5.00E + 15	0.0	17,330
288	$OH + CH_3 \rightarrow H_2 + CH_2O$	8.00E + 09	0.5	-1,755
289	$CH + H_2 + M \rightarrow CH_3 + M$		pressure dependent	
290	$CH_2 + O_2 \rightarrow H + H + CO_2$	5.80E + 12	0.0	1,500
291	$CH_2 + O_2 \rightarrow O + CH_2O$	2.40E + 12	0.0	1,500
292	$CH_2 + CH_2 \rightarrow H + H + C_2H_2$	2.00E + 14	0.0	10,989
293 ^b	$CH_2(S) + H_2O \rightarrow H_2 + CH_2O$	6.82E+10	0.2	-935
294	$C_2H_1 + O_2 \rightarrow O + CH_2CHO$	3.03E + 11	0.3	11
295	$C_2H_3 + O_2 \rightarrow HO_2 + C_2H_2$	1.34E + 06	1.6	-384
296	$O + CH_1CHO \rightarrow OH + CH_1CHO$	2.92E + 12	0.0	1,808
297	$O + CH_3CHO \rightarrow OH + CH_3 + CO$	2.92E + 12	0.0	1,808
298	$O_1 + CH_1CHO \rightarrow HO_1 + CH_1 + CO$	3.01E + 13	0.0	39,150
299	$H + CH_{3}CHO \rightarrow CH_{3}CHO + H_{3}$	2.05E + 09	1.2	2,405
300	$H + CH_3CHO \rightarrow CH_3 + H_3 + CO$	2.05E + 09	1.2	2,405
301	$OH + CH_{CHO} \rightarrow CH_{+} + H_{+O} + CO$	2.34E + 10	0.7	-1.113
302	$HO_1 + CH_1CHO \rightarrow CH_1 + H_2O_2 + CO$	3.01E + 12	0.0	11.923
303	$CH_1 + CH_1CHO \rightarrow CH_1 + CH_1 + CO$	2.72E + 06	1.8	5,920
304	$H + CH_{O}CO + M \rightarrow CH_{O}CHO + M$		pressure dependent	
305	$0 + CH_{2}CHO \rightarrow H + CH_{2} + CO_{3}$	1.50E + 14	0.0	0.0
306	$0_1 + CH_1CHO \rightarrow OH + CO + CH_1O$	1.81E + 10	0.0	0.0
307	O, + CH,CHO → OH + HCO + HCO	2.35E + 10	0.0	0.0
308	H + CH ₂ CHO → CH ₂ + HCO	2.20E + 13	0.0	0.0
309	$H + CH_{2}CHO \rightarrow CH_{2}CO + H_{2}$	1.10E + 13	0.0	0.0
310	$OH + CH_{CHO} \rightarrow H_{*O} + CH_{*CO}$	1.20E + 13	0.0	0.0
311	$OH + CH_{CHO} \rightarrow HCO + CH_{OH}$	3.01E + 13	0.0	0.0
312	$CH_{2} + C_{2}H_{2} + M \rightarrow C_{2}H_{2} + M$		pressure dependent	
313	$O + C_{H_{2}} \rightarrow OH + C_{H_{2}}$	1.93E+05	27	3.716
314	$H + C_2H_2 \rightarrow C_2H_2 + H_2$	1.32E + 06	2.5	6.756
315	$OH + C_2H_2 \rightarrow C_2H_2 + H_2O$	3.16E + 07	1.8	934
316	$C_1H_2 + H_2O_2 \rightarrow HO_2 + C_2H_2$	3.78E + 02	2.7	1.500
317	$CH_2 + C_2H_2 \rightarrow C_2H_2 + CH_2$	9.03E - 01	3.6	7.154
318	$CH_{2} + C_{2}H_{4} + M \rightarrow C_{2}H_{2} + M$		pressure dependent	1,101
319	$0 + C_{H_1} \rightarrow C_{H_2} + CH_0$	9.64E + 13	0.0	0.0
320	$H + C_{2}H_{2} + M \rightarrow C_{2}H_{2} + M$		pressure dependent	0.0
321	$H + C_{*}H_{*} \rightarrow CH_{*} + C_{*}H_{*}$	4.06E + 06	2.2	890
322	$OH + C_{H_2} \rightarrow C_{H_2} + CH_0H$	2.41E+13	0.0	0.0
323	$HO_2 + C_2H_2 \rightarrow O_2 + C_2H_2$	2.55E + 10	0.3	-943
324	$HO_2 + C_2H_2 \rightarrow OH + C_2H_2 + CH_2O$	2.41E + 13	0.0	0.0
226		1 03E ± 13	_0.3	0.0

The forward rate coefficient $k = AT^{b} \exp(-E/RT)$. R is the universal gas constant, T is the temperature in K. The units of A involve gmol/cm3 and s, and those of E, cal/gmol.

^bCH₂(S) designates the singlet state of CH₂.

Direct Chemistry

Solve a transport equation for each species

$$\frac{\partial \rho Y_k}{\partial t} + \frac{\partial \rho u_j Y_k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D_k \frac{\partial Y_k}{\partial x_j} \right) + w_k$$

Reaction rates for each species from rate law and Arrhenius reaction rates

$$aA+bB \rightarrow dD+eE...$$
 $\frac{d[A]}{dt} = -k[A]^{a}[B]^{b}$
 $k = A \cdot e^{-E_{a}/RT}$

Direct Chemistry

n-dodecane - methanol

n-dodecane

t = 1.6 ms

Emissions: NOx and soot

OK/Aalto 2015

NO_x emissions

- NO + NO2 = NOx
- Nitric oxide + nitrogen dioxide = nitrogen oxides
- Typically >95% is NO, rest is NO2
- Environmental effects of NOx
 - Precursor of acid rain
 - Photochemical smog in the presence of unburned hydrocarbons and sunlight
- Nitrous oxide
 - Pollutant N_2O
 - Ozone depletion
 - Greenhouse gas

NO_x emissions

- The different types of NO_x emissions:
 - Thermal NO_x
 - Prompt NO
 - NO produced via N_2O
 - Fuel bound nitrogen

Thermal NO

Or Zeldovich-NO (1946)

$$O + N_2 \xrightarrow{k_1} NO + N \qquad k_1 = 1.8 \cdot 10^{14} \exp\left(-\frac{318 \, kj \, mol^{-1}}{(RT)}\right)$$
$$N + O_2 \xrightarrow{k_2} NO + O \qquad k_2 = 9 \cdot 10^9 \exp\left(-\frac{27 \, kj \, mol^{-1}}{(RT)}\right)$$
$$N + OH \xrightarrow{k_3} NO + H \qquad k_3 = 2.8 \cdot 10^{13}$$

First reaction has high activation energy and hence it has relevant reaction rates only at high temperatures. It is the rate limiting step of the mechanism.

School of Engineering

Thermal NO

Warnatz, Maas, and Dibble 1998

Temperature dependence of the rate coefficient k_1 in the Zeldovich mechanism.

Thermal NO

The thermal NO formation can be approximated by

$$\frac{d[NO]}{dt} = 2k_1[O][N_2]$$

 Consequently, NO formation can be reduced by lowering [O] or [N2] or k₁ (temperature)

NO_x emissions

- Thermal NO forms only at high temperatures
- Thermal NO chemistry "freezes" at lower temperatures

Soot emissions

- Complicated reaction mechanisms
- Detailed formation mechanisms will be provided in another lecture
- Soot formation starts with the production of polycyclic aromatic hydrocarbons or PAH's. Most important precursor of PAH is acetylene (C2H2).
- PAH consists of e.g. benzene rings (C6H6).
- PAH grows by acetyle addition
- PAH and acetylene can be found under rich conditions

Soot emissions

Warnatz, Maas, and Dibble 1998

Typical soot particle size is between 10-1000 nm and the maximum number density close to 100nm. Early soot chemistry is fast.

Additions to Dec's model: air entrainment details and inner structures

T. Aizawa et al. 2002

Additional Reading

- Combustion, Warnatz, J., Maas, U., and Dibble, R.W.,
 2nd edition, ISBN 3-540-65228-0, 1999.
- Poltto ja Palaminen, 2. painos, ISBN 951-666-604-3, 2002.
- Turbulent Combustion, Norbert Peters, ISBN 0-951-66082-3, 2000.
- Combustion Physics, Chung Law, ISBN 978-0-521-15421-5, 2006 (paperback 2010)