

Modelling and Control of Water and wastewater treatment processes

WAT - E2130 Lecture 3 Influent fractions and nutrient removal Modelling physical and chemical processes

Anna Mikola TkT D Sc (Tech)

Lecture outline

SUMO EXAM

INFLUENT FRACTIONS

Wastewater and biomass fractions

Role of different fractions in models

NUTRIENT REMOVAL

Nitrogen removal

Phosphorus removal

Anaerobic digestion

EXERCISE WITH SUMO

HW2 Exercise 1

MODELLING PHYSICAL PROCESSES

Phase separation

Mixing

MODELLING CHEMICAL PROCESSES

рΗ

Chemical phosphorus removal EXERCISE WITH SUMO HW2 Exercise 4

Klaukkala WWTP excursion & individual project work

Figure 1: Organic Components in Traditional Wastewater Treatment Plant Effluent. Adapted from Shon et al. (2006).

Fractionation of COD

Organic matter

Nitrogen

Phophorus

Why is influent quality important?

- Readily biodegradable organic matter
 - Oxygen demand pattern
 - Determines process's ability to enhanced biological P removal
 - Is denitrification achieved with wastewater's own carbon source
- Unbioderadable particulate COD
 - Affects the oxygen demand
 - Affects the sludge yield

- Influent quality also affects e.g. the performance of the primary clarifier
- Biggest differences with industrial wastewater

Influent COD fractionation

- **TCOD** = $X_B + X_U + C_B + C_U + S_B + S_U$ Particulate Colloidal Soluble
- $\mathbf{FCOD}_{1.2\mu m} = \mathbf{C}_{\mathrm{B}} + \mathbf{C}_{\mathrm{U}} + \mathbf{S}_{\mathrm{B}} + \mathbf{S}_{\mathrm{U}}$
- **ffCOD** = $S_B + S_U (ZnSO_4 \text{ at } 10 \text{ pH using NaOH})$
- **RBCOD** = $\text{ffCOD}_{\text{Influent}} \text{ffCOD}_{\text{Final effluent}}$
- **OUR** for OHO determination

RBCOD measurement by respirometry

Respirogram

Components contributing to measured OUR

Aalto University School of Engineerin

Activated Sludge Model No. 1 -Influent

Four wastewater fractions, at least!

Activated Sludge Model No. 1 -MLSS

Four biomass fractions, at least!

SUMO 1 Influent Fractions

S = solubleC = colloidalX = particulate VFA = volatile fatty acid B = biodegradable U = unbiodegradable OHO = ordinary heterotrophs E = endogenous decay products BIO = biomass

0

Influent OHO measurement

Parameter	Concentration (mg/L)	Fraction	Fraction Units
Total COD	400		
Soluble unbiodegradable COD	20	0.05	(mg COD/mg total COD)
Soluble readily biodegradable COD	80	0.20	(mg COD/mg total COD)
Slowly biodegradable COD	248	0.62	(mg COD/mg total COD)
Particulate	186	0.75	(mg COD/mg SBCOD)
Colloidal	62	0.25	(mg COD/mg SBCOD)
Particulate unbiodegradable COD	52	0.13	(mg COD/mg total COD)
VSS*	149		
Particulate unbiodegradable portion of VSS**		0.22	
* VSS = (particulate slowly biodegradab **Particulate unbiodegradable portion of Note: These calculations assume a COD/	le COD + particula VSS = Particulate u VSS ratio of 1.6	te unbiodegi inbiodegrad	radable COD)/1.6 able COD/1.6 /VSS

Table 6-2. Example Calculation of Particulate Unbiodegradable Portion of Influent VSS

Sumo influent tool

Key measurements	Value	Unit	
Flow	24000.0	MGD or m ³ /d	
TSS	215.0	mg/L	
VSS	180.0	mg/L	
TDS	800.0	mg/L	
TKN	34.4	mgN/L	
TP	4.3	mgP/L	
Total Sulfur	20.0	mgS/L	
Alkalinity	350.0	mgCaCO3/L	
рΗ	7.2	-	

Influent COD

Influent cBOD₅

Influent filtered COD

Influent filtered flocculated COD

Effluent filtered COD (inert)

Help

Data

Key indicators for sanity check	Value	Unit	Usual value in US
VSS/TSS ratio	0.84	-	0.85
Particulate COD/VSS	1.50	mg COD/mg VSS	1.60
Dissolved salts	585.0	mg/L	
Alkalinity in molar units	7.0	meq/L	3 - 8

	Value	Unit				
	420.0	mgCOD/L	Particulate COD	270.00	mg COD/L	
	150.0	mgCOD/L	Filtered COD fraction	0.36	-	0.40
DD	80.0	mgCOD/L	Filtered flocculated COD fraction	0.19	-	0.20
	20.0	mgCOD/L	Unbiodegradable fraction of filtered COD	0.05	+	0.05
100	190.0	mgBOD/L	COD/BOD ratio	2.21	2	2.20

Biological processes Nutrient removal

Anna Mikola

Conventional N removal

Nitrification and denitrification

SRT	long SRT	short SRT increases the rate
Oxygen	high, 2 mg/l n	o oxygen or very low
Organic matter	no need (autotrophi	c) needs a carbon source
BOD load	low load	high load
Alkalinity	consumes	produces

BioP

Metabolism of bioP: Anaerobic VFA sequestration

Metabolism of bioP: Aerobic P uptake

Aalto University School of Engineering

BNR principle

Send NO_X to anoxic zones Don't send NO_X (or O_2) to anaerobic zones

Anaerobic digestion

Modelling physical processes – particle separation

Clarifiers/solid separation

Solid separation options Measures of sludge settleability Modelling secondary settlers

Settling simplified...

Simple Solids/Liquid Separators

Percent solids removal

- Primary ≈ 65%
- Final ≈ 99.8 %
- Membrane ≈ 100%
- Thickener ≈ 85 95 %
- Centrifuge solids capture ≈ 90%
- Sand filter ≈ 70%

Calculated on mass flow basis Difference provides effluent solids

Secondary or primary settlers

Functions

- Clarification
- Thickening
- Sludge storage

Also reactive

- often denitrification
- Redox varying in the sludge blanket

Modelling clarifiers and solid separation

Clarifier theory

Particles that settle faster than the hydraulic retention time of the basin are removed.

Settling Classes or Types

Discrete Settling of dilute suspensions, little or no tendency to flocculate

Flocculent Settling of dilute suspensions with flocculation taking place during the settling

Hindered (Zone settling) Particles settle as a mass; inter-particle forces hold them in fixed position, settlement in a zone

Compressive Settlement provided by the compacting mass resulting from particles that are in contact

Adapted from Prof. Pagilla Illinois Institute of technology

Dimensioning of settlers – based on the loading of solids per surface area

Flux-based settlers

Divide settler into layers

Measures of sludge settleability

ZSV Zone Settling Velocity Interface subsidence rate in m/h Standard: stirred (SZSV)

Zone settling velocity test

- Lag phase
- Linear phase
- Compression phase

Zone settling velocity test

- Repeat on range of MLSS

Vesilind settling function

- Read SZSV test slopes

Vesilind settling function

• Evaluation

Vesilind settling function

• Evaluation

Double exponential model Max. settling velocity

Double exponential model Hindered settling parameter

Default dbexp model parameters

Double exponential parameters	Uni t	Normal sludge	Bulkin g sludge	Old sludge
Maximum Vesilind settling velocity (Vo)	m/d	410	250	410
Maximum (practical) settling velocity (Vo')	m/d	270	200	270
Hindered zone settling parameter (K _h)	L/g	0.4	0.6	0.2
Flocculent zone settling parameter (K _f)	L/g	2.5	3.0	1.5
Maximum non-settleable TSS	mg/ L	20	10	30
Non-settleable fraction	-	0.001	0.001	0.002

Modeling chemical processes pH and chemical P removal

Aalto University School of Engineering

pH model: components

Weak acid systems

- Carbonate
- Ammonia
- Phosphate
- Acetate, VFAs

Strong cations

- Calcium
- Magnesium
- Other strong cations (Na⁺, K⁺)

Strong anions (Cl⁻, SO₄²⁻)

pH model allows

Gas phase modeling

- Transfer / stripping of CO2, NH3
- Species distribution depends on pH

pH inhibition in biological processes

- Low pH
- High pH

Chemical P removal

- Alum, ferric addition for P precipitation
- Spontaneous Precipitation
- Struvite
- Ca carbonate and phosphate

Chemical P removal

Principle of chemical phosphorus removal

Chemicals used for phosphorus precipitation Impacts of chemical addition on plant operation

- Struvite / calcium phosphate precipitation
- Metal salts additions

Side effects:

- Inhibition of nitrification
- Inhibition of BioP removal
- Drop of pH

Influence of mixing power (G)

(ferric-chloride; Pini = 4.1 mg/L; Fedose/Pini = 1.8; time of sampling: 11 min after coagulant addition)

Chemical precipitation

• Adsorption on hydroxide flocs

Preformed HFOs; P_{ini} = 1. 0 mg/L; Fe/P = 3.0)

Chemical precipitation

Combined equilibrium and kinetic process

FePO₄ crystals form only between pH 2 and 4

"Chemical precipitation" is misleading

- Hydrous ferric oxides
 precipitate
- Co-precipitation of PO₄
- Diffusion into flocs
- Adsorption (chemisorption)
- Coagulation flocculation

Surface Complexation

Chemical precipitation

• Under the Microscope

Table 1 – Reactions considered in the kinetic pH model, chemical ion paring and precipitation model.

1) Chemical Equilit	orium Dissociation	3) Physical Mineral Precip	pitation	
CED_01_H2O CED_02_H2CO3 CED_03_HCO3	$H_2O \leftrightarrow H^+ + OH^-$ $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$	PMP_1_HFO_pre Fe PMP_2_FePO4 Fe	$(OH)_{3,sq} \leftrightarrow Fe(OH)_{3(s)}$ $^{31} + PO_4^{-3s} \leftrightarrow FePO_4$	
CED_04_H3PO4	$H_1PO_4 \leftrightarrow H^* + H_2PO_4^-$	4) Chemical Surface Complexation		
CED_05_H2PO4 CED_06_HPO4	$H_2PO_4^{-} \leftrightarrow H^+ + HPO_4^{2-}$ $HPO_4^{-2} \leftrightarrow H^+ + PO_4^{-3-}$	CSC_01_HFOH_HPO4 CSC_02_HFOH_H2PO4	adsorption of phosphates onto	
2) Chemical Ion Par	ring	CSC_03_HFOH_H3PO4	X _{HFO,H}	
CIP_01_CaOH	$Ca^{2+} + OH^- \leftrightarrow CaOH^+$	CSC_04_HFOH_H	Protonation of X _{HFO,H}	
CIP_02_CaCO3	$Ca^{2+} + CO_3^{2+} \leftrightarrow CaCO_3$	CSC_05_HFOL_HPO4	adsorption of	
CIP_03_CaHCO3	$Ca^{2*} + HCO_3 \leftrightarrow CaHCO_3^{*}$	CSC_06_HFOL_H2PO4	 phosphates onto 	
CIP_04_CaPO4	$Ca^{2^*} + PO_4^{3^*} \leftrightarrow CaPO_4^{*}$	CSC_07_HFOL_H3PO4	XHPO.L	
CIP_05_CaHPO4	$Ca^{2*} + HPO_4^{2*} \leftrightarrow CaHPO_4$	CSC_08_HFOL_H	Protonation of X _{HFO,L}	
CIP_06_CaH2PO4	$Ca^{2+} + H_2PO_4 \leftrightarrow CaH_2PO_4^+$			
CIP_07_FeOH	$Fe^{3+} + OH \leftrightarrow FeOH^{2+}$	5) HFO aging processes		
CIP_08_FeOH2	$FeOH^{2*} + OH^{-} \leftrightarrow Fe(OH)_{2}^{*}$	HFO_1_aging_HFOH	$X_{HFO,H} \rightarrow X_{HFO,L}$	
CIP_09_FeOH3	Fe(OH) ₂ ⁺ +OH ⁺ ↔ Fe(OH) _{3(aq)}	HFO_2_aging_HFOL	$X_{HFO,L} \rightarrow X_{HFO,old}$	
CIP_10_FeOH4	$Fe(OH)_2 + 2OH \leftrightarrow Fe(OH)_4$	HFO_3_aging_HFOH,b	$X_{HFO,H,b} \rightarrow X_{HFO,L,b}$	
CIP_11_FeHPO4	$Fe^{+} + HPO_4^{-2} \leftrightarrow FeHPO_4^{+}$	HFO_4_aging_HFOL,b	$X_{HFO,L,b} \rightarrow X_{HFO,old}$	
CIP_12_FeH2PO4	$Fe^{3+} + H_2PO_4^- \leftrightarrow FeH_2PO_4^{2+}$			

A dynamic physicochemical model for chemical phosphorus removal

H. Hauduc ^{a,b,c,*}, I. Takács ^d, S. Smith ^e, A. Szabo ^f, S. Murthy ^g, G.T. Daigger ^h, M. Spérandio ^{a,b,c}

Excursion to Klaukkala WWTP

Aalto University School of Engineering

Klaukkala WWTP

The process

Excursion Friday May 3rd

Departure at 8:00!!! Bus transportation from the WATER BUILDING!!

