MEC-E8003 Beam, Plate and Shell models, exam 09.04.2019

1. Derive the expressions of linear strain components &,,., £,4, &g.and &4 of the polar coordinate

rro
system. Use the displacement representation u =u,.¢, +u4é; where the components depend on

the polar coordinates 7 and ¢ . Use definitions
e e e
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2. Virtual work expression of a Bernoulli beam, clamped at the left end x =0 and loaded by force

F and moment R at the right end x = L of solution domain Q =(0,L), is given by

2
L
sw=[" M 40V | pswydx+(Fow—RIOY) .
0 dx2 dx

Use the principle of virtual work W =0 Véwe U to derive the beam equilibrium equation in
Q), natural boundary conditions on x=L, and essential boundary conditions on x=0.
Functions of set U have continuous derivatives up to the fourth order in Q. In addition, a

function of U vanishes at x =0 as does also its first derivative.

3. Consider the curved beam of the figure forming a 90- z
degree circular segment of radius R in the horizontal
plane. Find the stress resultants N(s), O,(s), Op(s),
T(s), M, (s), and My(s). Use the equilibrium equations 5 y

of the beam model in the (s,n,b)—coordinate system. The _ 7

distributed constant load of magnitude & is acting to the

negative direction of the z —axis.

4. Show that the vertical displacement w(x,y) of the Kirchhoff plate model satisfies the
biharmonic equation DV(Z)V(Z)W = b, . Start with the Reissner-Mindlin plate model equations for

the bending mode:
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5. A steel ring of length L, radius R, and thickness ¢ is loaded by |
radial surface force p acting on the inner surface. No forces are
acting on the ends. Model the ring as a cylindrical membrane,
write down the equilibrium and constitutive equations, and solve

for the radial displacement. Assume rotation symmetry. Young’s

modulus E and Poisson’s ratio v of the material are constants.



Derive the expressions of linear strain components &,,., €.4, &4.and &4 of the polar coordinate

rro
system. Use the displacement representation i =u,.6, +u4é; where the components depend on the

polar coordinates 7 and ¢ . Use definitions
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Solution

In manipulation of vector expression containing vectors and tensors, it is important to remember that
tensor (® ), cross (x ), inner (-) products are non-commutative (order may matter). The basis vectors
of a curvilinear coordinate system are not constants which should be taken into account if gradient
operator is a part of expression. Otherwise, simplifying an expression or finding a specific form in a
given coordinate system is a straightforward (sometimes tedious) exercise. For simplicity of
presentation, outer (tensor) products like @ ® b are denoted by @b . Otherwise, the usual rules of
algebra apply: Gradient operator V acts on everything on its right-hand side, the operator is treated

like a vector etc.

2p Let us start with the gradient of displacement (an outer product). Substitute first the
representations in the polar coordinate system

Viu = (e, §+e¢ ¢)(u 6 +Ugey) .

Then expand to have a term-by-term representation. Keep the order of the basis vectors and the
position of derivatives
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2p Use the derivative rule of products. Notice that the basis vectors are not constants and may have

non-zero derivatives
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Substitute the derivatives of the basis vectors
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Combine the terms having the same pair of basis vectors (order matters so terms containing €y, and

é.€4 cannot be combined)

ou 0
¢~ — u ¢ - -
¢ +(r8; ) ¢ - +(—+—¢)€¢€¢




2p Conjugate of a second order tensor can be obtained by swapping the basis vectors in all the pairs.
Conjugate is a kind of transpose and can also be obtained by transposing the matrix of the component

representation.
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Finally using the definition & = %[va +(Vii)]
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In the components of strain ¢,,., €4, &g, and &4, indices are in the same order as the indices in the
basis vector pairs. Hence
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Virtual work expression of a Bernoulli beam, clamped at the left end x =0 and loaded by force F
and moment R at the right end x = L of solution domain Q2 =(0, L), is given by

2
L
sw={" & 5WM+5wb)dx+(F5w—Rd§—W)x:L.
0 dx2 dx

Use the principle of virtual work 6 =0 Vowe U to derive the beam equilibrium equation in Q,
natural boundary conditions on x = L, and essential boundary conditions on x = 0. Functions of set
U have continuous derivatives up to the fourth order in Q. In addition, a function of U vanishes at

x =0 as does also its first derivative.

Solution

In MEC-E8003, principle of virtual work is used to derive the equilibrium equation(s) in terms of the
stress resultants (like shear forces and bending moments). The constitutive equation, giving the
relationship between the stress resultants and kinetic quantities (like displacements and rotations), is

a separate story. The mathematical tools needed in the derivation are (one-dimensional case Q c R)
a,beC’(Q)

d ) .
.[Q a(ab}dx = Z o0 nab , where n = =1 is the unit outward normal to Q (on 0Q)
.[Q abdx=0 Vb < a=0 inQ.

2p Integration by parts once in the first term gives an equivalent form (notice that Sw e U and
therefore Sw=dow/dx=0 at x=0
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Integration by parts second time in the first term gives also an equivalent form

d*M
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2p According to the principle of virtual work SW =0 VSweU . Let us first consider a subset
Uy cU for which 6w=ddéw/dx=0 at x=L so that the boundary terms vanish. The equilibrium
equation follows from the fundamental lemma of variation calculus:
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5W=jOL( +b=0 in (0.1).

Let us next consider a subset Uy — U for which only déw/dx =0 at x=0 so that the last boundary

term of the virtual work expression vanishes. Also, the first term can be omitted due to the



equilibrium equation. The natural boundary condition follows from the fundamental lemma of
variation calculus:
M

5W=[(—d—M+F)5w]x:L=O VowelU, < —d—+F=O at x=1L.

dx dx
Finally, let us consider a subset Uy cU for which only dSw=0 at x=L and use the equations
already obtained to simplify the virtual work expression. The natural boundary condition follows
from the fundamental lemma of variation calculus:

5W=[(M—R)%]XZL=O VoweU & M—-R=0 at x=L.
X

2p As the last step, the essential boundary conditions follow from the problem definition (clamped).
They can also partly be deduced from the definition of U . Vanishing of variation déw/dx and dw

at x =0 imply that dw/dx and w are givenat x=0.

A beam boundary value problem is composed of the equations implied by the principle of virtual

work

2

dAz/[+b:0 in (0,L). €

dx

—%+F:O and M-R=0 at x=L. €
x

w=0 and @:0 at x=0. €
dx

Definition of stress resultant, stress-strain relationship, and elasticity tensor for the beam problem

gives the constitutive equation

2
M= —Eld—;V
dx

which is needed for a closed system.



Consider the curved beam of the figure forming a 90-degree
circular segment of radius R in the horizontal plane. Find the
stress resultants N(s), O,(s), Op(s), T(s), M,(s), and y
M, (s) . Use the equilibrium equations of the beam model in -

the (s,n,b)—coordinate system. The distributed constant load
of magnitude b is acting to the negative direction of the

Z —axis.

Solution
In a statically determined case, stress resultants follow from the equilibrium equations and boundary
conditions at the free end of the beam (or directly from a free body diagram). In (s,n,b)—coordinate
system, equilibrium equations are
N'-Q,x + b T'—M,x +cg
O0,+Nk—Qyt+b, 1=0 and M, +Tx—Myr—0Qp+c, =0.
O, +0,7+b My+M,t+0, +cp
2p For a circular beam, curvature and torsion are x =1/R (constant) and 7 =0. As external

distributed forces and moments b, =b, =c, =c, =c, =0 and b, =b, equilibrium equations and the

boundary conditions at the free end simplify to (here L=7R/2)
N'-Q,/R T'-M, /R
0,+N/R:=0 and <M, +T/R-0Q), =0 in (0,L)
O +b M +0,
N T
0,r=0 and <M, r=0at s=L.

Op M,

2p Equations constitute a boundary value problem which can be solved one equation at a time by

following certain order

O,=-b in (0,L) and Qy(L)=0 = Qy(s)=b(L-s). €

Eliminating O, and N from the remaining two connected force equilibrium equations and using the

original equations to find the missing boundary condition gives
N"+L2N:O in (0,L) and N'(L)=N(L)=0 = N(s5)=0. €&
R

Knowing the result above, the first equilibrium equation gives

0,(s5)=0. €



2p After that, continuing with the moment equilibrium equations with the already known solutions to

the force equilibrium equations

M) =-0,=0 in (0,L) and My(L)=0 = M,(s)=0. €

Eliminating M, and T from the remaining two connected moment equilibrium equations and using

the original equations to find the missing boundary condition gives (L =7R/2)

T"+§T=%Qb=%@—s) in (0,L) and T'(L)=T(L)=0 =

T(s)=—bR2 cos(%) +bR(L-s). €
Knowing this, the first moment equilibrium equation gives

M, (s)=RT' =bR> sin(%) ~bR*. €



Show that the vertical displacement w(x,y) of the Kirchhoff plate model satisfies the biharmonic
equation DV(%V(%W:bn. Start with the Reissner-Mindlin plate model equations for the bending

mode:
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2p Kirchhoff constraints are first used to write the constitutive equations in terms of the transverse
displacement
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2p In the Kirchhoff model, shear forces Q, and Q,, are in the role of constraint forces to be solved
from the moment equations. Eliminating the shear forces from the equilibrium equation in the

transverse direction by using the moment equations gives
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2p The biharmonic equation for the transverse displacement follows from the equilibrium equation

above, when the constitutive equations for the moments are substituted there
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The last invariant form holds also, e.g., in the polar coordinate system.



A steel ring of length L, radius R, and thickness ¢ is loaded by
radial surface force p acting on the inner surface. No forces are
acting on the ends. Model the ring as a cylindrical membrane, write
down the equilibrium and constitutive equations, and solve for the

radial displacement. Assume rotation symmetry and up=0.

Young’s modulus £ and Poisson’s ratio v of the material are

constants.

Solution
According to the formulae collection, equilibrium and constitutive equations of a cylindrical

membrane in (z,¢,n) coordinates are (notice that ¢, is directed inwards)
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2p Due to the rotation symmetry, the derivatives with respect to the angular coordinate vanish and
ugy =0. External distributed force b, =—p is due to the traction acting on the inner boundary.
Therefore, the equilibrium equations and constitutive equations simplify to a set of ordinary
differential equations

dN,, dN ., 1 :
=z, =0, —Ny,,—p=0 in (0,L),
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2p As the edges are stress-free i.e.

N,,=0and N,y =0 on {0,L}.

Solution to the stress resultants, as obtained from the equilibrium equations, are

N.,=0,N,;;=0,and Nys=Rp.

2p Constitutive equations give

tE 1 _du du v
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