PAD 25.04 The art of asking right questions?

AALTO VENTURES PROGRAM

Task #1: Helkama teams make a picture **"What is efficiency?";** Microsoft teams make a picture **"What is productivity?"**.

10 min.

Decision <-> risk

Risk

• Every business effort includes risk

•Without risk there is no reward: If you remove the risk, you remove the reward

- Risk is a decision-making "feature"
 - •Decisions are based on incomplete information
- Different types of risks
 - •Money loose investment
 - •Time loose time-to-market game

 Opportunity cost – could we have user our resources in a more effective way

A good decision

The facts have been validated
The unknowns have been identified
The risk assessment has been done

4. The decision maker knows and understands the above

The balancing act 1

Keep risk on an acceptable level while still making progress

Image credit: flickr.com/photos/basileflickr/

The balancing act 2

Keep risk on an acceptable level while still making progress

Photo credit: flickr.com/photos/jaredeberhardt/

Improving reliability of your proposals

Interviews = verbal communication

Experimentation and prototyping enhance verbal communication with artifacts

Solution creation process is always iterative: experiment, test, concept modification, prototype, test and so on.

What do we need to find out next?

Developing a new business:

Extract value out of uncertainty. Endless quest for information.

- 1. What information?
- 2. How to get it?

Levels of uncertainty

- 1) Unknown unknowns "Surprise"
- 2) Known unknowns

Eg blank boxes in canvas

- 3) Hypothesis (weak knowns)How reliable is the info?
- 4) Decision making foundation Can we make a decision?

Method to gain new data	Goals and examples	Stakeholder involved	Artefact	Price/ performance	Pre- requisites
User research	Understanding user situation and problem, using eg interviews, contextual research, observations	Yes	No	Low reliability	Almost none
Other research	Competitor analysis, expert interviews, benchmarking, calculations, modelling	No	No	Variable, mostly setting context and boundaries	Experts, software, specific qualification
Experiments	Analysing user behaviour and preferences in a more neutral way	Yes	Yes, but not of the end-product	Improved reliability, a bit higher cost	Almost none
Prototyping	Testing solution acceptance, eg. features, customer experience, usability, design and aesthetics	Yes	Yes, subset of end-product	Best reliability, highest cost	Materials, certain qualification

Example case

Starting point:

People have problems transporting big items

Outcome

Transport service tailored for second hand market places

Experiment: How big an item causes problems?

Experiment

- Bring different size boxes to Sello shopping center
- Ask people how they would transport the boxes home.

Outcome of experiment

No one uses box

Additional information

Beds and sofas bought on second hand market places cause problems

Experiment: How much would a wan cost?

Experiment

- Set up a meeting with a wan company
- Discuss/ask for offer for wan • + driver

adurmated pakottas pro veziktas

data Marinemeri DA TRADATI

ALARAMIAN MARKANING COLUMNIARAMINENT

Ventral Incode State - Webster

ADD Fieldbody Londonnink

Wething palettings: Whydattaille : Vetering to

Outcome of experiment

Price for wan + driver

Additional information

Cheapest time of the day 16-18

Prototype: How much would a customer pay?

Experiment

- Post a fake add on tori.fi
- Offer people calling about the sofa to deliver it home at different prices

Outcome of experiment

Price range and % of customers interested in delivery

Additional information

Scheduling of delivery key question

Market research: How big is the market?

Experiment

- Search for relevant products on tori.fi
- Do count with some days in between to estimate turnaround
- Map relevant cases to find driving times

Outcome of experiment

Estimates of addressable market + length of wan route

Additional information

Task #2

Look at your business model canvas and think what are the questions / hypothesis you want to find the answers for.

15 min.

Experimentation guidelines

1. Declare your expected outcomes upfront

"If you simply plan on seeing what happens you will always succeed at seeing what happens because something is guaranteed to happen."

- Eric Ries, The Lean Startup
- 2. Make declaring outcomes a team sport
- 3. Emphasize estimation not precision
- 4. Measure actions versus words
- 5. Turn your assumptions into falsifiable hypotheses
- 6. Time-box your experiments
- 7. Always use a control group

EXPERIMENT CANVAS

RISKIEST ASSUMPTION What is the riskiest assumption you want to test?	RESULTS Record the qualitative or quantitative results of the experiment	
FALSIFIABLE HYPOTHESIS Construct your hypothesis		
We believe that < specific, testable action >		
Will drive < specific, measurable outcome > Within < timeframe >	CONCLUSION Did your results match your hypothesis? Or did they contradict your hypothesis? And was your result clear enough?	
	VALIDATED	
EXPERIMENT SETUP What kind of experiment will you use? What are you measuring? How many times?	INVALIDATED	
	INCONCLUSIVE	
	NEXT STEPS What is your next move?	
	*https://designabetterbusiness.tools/tool	s/experiment-canva

EXPERIMENT CANVAS

EXPERIMENT CANVAS

RISKIEST ASSUMPTION What is the riskiest assumption you want to test?		RESULTS Record the qualitative or quantitative results of the experiment		
FALSIFIABLE HYPOTHESIS Construct your hypothesis	TASI			
We believe that < specific, testa Will drive < specific, meas Within < timeframe >	In teams make a plan of your experiment. Be ready to present it.			
EXPERIMENT SETUP What kind of experiment will you What are you measuring? How m	30 min.			
		NEXT STEPS What is your next move? *https://de	esignabetterbusiness.tools/tools/	experiment-can

	Week	Mon	Tue	Wed	Thu	Fri
	16		16.4. Introduction Eero 9-12	17.4. Brief Microsoft Keilaranta 9-12	18.4. Theory of PA, Katja Hölttä-Otto 9-10 Brief Helkama Otaniemi 10.30-12.30	EASTER HOLIDAY
	17	EASTER HOLIDAY	23.4. User Research AVP 9-12 Tutoring Eero 12-16	Independent Work	25.4. Customer Segment. AVP 9-12 Company Cases Heli Säde 13-16	Independent Work
	18	Independent Work	30.4. User Testing AVP 9-12 Tutoring Eero 13-16	1st of May / VAPPU	2.5. Tutoring Heli 9-12	3.5. Excursion Helkama whole day Hanko
	19	Independent Work	7.5. Q&A Sessions AVP 9-12 / Tutoring Eero&Heli 12-16	8.5. Mid-review: Microsoft 9-12	9.5. Mid-review: Helkama 13-16	Independent Work
	20	Independent Work	14.5. Q&A Sessions AVP 9-12 / Tutoring Eero&Heli 12-16	Independent Work	16.5. Tutoring Eero&Heli 9-16	Independent Work
	21	Independent Work	21.5. Presentation Skills AVP 9-12 / Tutoring Eero&Heli 12-16	22.5. Tutoring Eero&Heli 9-12	23.5. Final Presentation: Helkama 13-16	24.5. Final Presentation: Microsoft 9-12

TEAM ASSIGNEMENT

- Conduct 2 different experiments till the 7th May;
- Be ready to present your experiments;
- Update your BMC based on the experiments' insights;
- Create / update your framework (metrics, relational map or your own framework) and bring it to the class.

Thank You!

If you have questions feel free to contact:

- lidia.borisova@aalto.fi
- johannes.kaira@aalto.fi
- hakan.mitts@aalto.fi

