Fill in the requested information to every answer sheet.

Calculators and literature forbidden.

This time you may assume the Fourier inverse formula known.
Remember Euler's formula $\mathrm{e}^{\mathrm{i} x}=\cos (x)+\mathrm{i} \sin (x)$.
About grading: Every exam problem will be graded from 0 to 6 points. Harmless small errors do not prevent from getting maximal points. You will get points if your answer contains at least some information (relevant definitions, pictures, calculations etc) - empty answer is surely worth zero. Remember to mention if you use some well-known properties of Fourier transforms.

1. Show that the Fourier integral transform preserves the inner product: in other words, show that

$$
\langle\widehat{r}, \widehat{s}\rangle=\langle r, s\rangle
$$

holds for "nice enough" non-periodic signals $r, s: \mathbb{R} \rightarrow \mathbb{C}$. What does the conservation of energy mean here?
2. At time $t \in \mathbb{R}$ let

$$
s(t)=\sin (3 \pi t)+7 \cos (4 \pi t)
$$

(a) Find the Fourier coefficients of this 1-periodic signal $s: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C}$. That is, find the Fourier transform $r=\widehat{s}: \mathbb{Z} \rightarrow \mathbb{C}$.
(b) Find the energy of s. (Hint: use (a) and conservation of energy.)
(c) Find the Fourier transform $\widehat{r}=\widehat{\widehat{s}}$.
3. Find the discrete Fourier transform $r=\widehat{s}$ for the 4-periodic digital signal $s: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{C}$ when

$$
s(0)=6, \quad s(1)=5, \quad s(2)=4 \quad \text { and } \quad s(3)=5 .
$$

Find also $\widehat{r}=\widehat{\widehat{s}}$. Write your answers real-valued.
4. Let $s(t)=\mathrm{e}^{-\pi t^{2}}$. Using information $\widehat{s}=s$, find

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} 2 \pi(t-u) \cdot \nu} s(u) k(t, u, \nu) \mathrm{d} u \mathrm{~d} \nu
$$

where
(a) $k(t, u, \nu)=s(u)$,
(b) $k(t, u, \nu)=\widehat{s}(\nu)$.

