Space Climate

Shabnam Nikbakhsh

Aalto University

The Sun

Core:

- Nuclear fusion process $\mathrm{H} \rightarrow \mathrm{He}$
- Temp: ~ 15 Million Kelvin, radius: ~ 0.2 to $0.25 R_{\odot}$

$$
R_{\odot}=695,700(\mathrm{~km})
$$

Radiation Zone:

- Energy moves outward as electromagnetic radiation
- Temp: ~8 MK, radius: ~300,000 km

Convection Zone:

- Consist of plasma, generates magnetic field
- $\sim 200,000 \mathrm{~km}, 30 \%$ of the radius

Photosphere:

- Visible surface, Radius: $\sim 500 \mathrm{~km}$ thick, T: 5800 K
- Features can be seen in this layer: Active regions, sunspots, bright faculae, granules

Chromosphere:

- $\sim 10,000 \mathrm{~km}$ thick
- Features can be seen in this layer: filaments or prominences, spicules

Corona:

- Extremely hot (over 1,000,000 kelvin) but tenuous plasma $<10^{9} \mathrm{~cm}^{-3}$

Solar Active Regions (ARs)

- Might produce sunspots
- $B \sim 1000$ or more times stronger than the average magnetic field of the Sun

Most of flares \& CMEs are originated from these regions

Sunspots:

- Cooler than the surrounding
- Magnetic field strength 0.1 to 0.3 Tesla
- Temp: ~ 4000 K
- Size: 16 km to $160,000 \mathrm{~km}$

Solar flare:

Sudden explosion of energy Release lot of radiation into space
Sometimes accompanied by a CME

Coronal Mass Ejection (CME):

- Sudden outflow of plasma
- Often associated with flares
- Might reach to the Earth 1-2 days

Coronal Holes

- Appear in the Corona
- Observed in the EUV and soft X-ray images
- Cooler and less dense than surrounding plasma
- Associated with open and unipolar magnetic field lines which allows the solar wind to escape more easily to the space
- Produces the fast solar winds, referred to as high speed streams
- Develop at any time, but more common and persistent during solar minimum

Solar Wind

- Continuous stream of charge particles
- Average speed 400 (km/s)
- Fast solar wind ($\sim 750 \mathrm{~km} / \mathrm{s}$): spews from coronal holes
- Slow solar wind ($\sim 350 \mathrm{~km} / \mathrm{s}$): origin is unknown

Solar Observation

150-Foot Solar Tower at Mount Wilson Observatory

Solar Observing Optical Network (SOON) Observatories

Magnetogram
27.06.1998

Observes: Iron at $8468 \AA$

Sunspot Drawing 01.01.2015

Observes: $\mathrm{H} \alpha$ at $6563 \AA$

HMI Dopplergram surface movement Photosphere

HMI Magnetogram Magnetic field polarity Photosphere

HMI Continuum Matches visible light Photosphere

AIA $1700 \AA$
4500 Kelvin
Photosphere

AIA $4500 \AA$ 6000 Kelvin Photosphere

AlA $211 \AA$ 2 million Kelvin Active regions

AIA $1600 \AA$
10,000 Kelvin
Upper photosphere/
Transition region

AIA $304 \AA$
50,000 Kelvin
Transition region/ Chromosphere

AlA $171 \AA$
600,000 Kelvin
Upper transition
Region/quiet corona

AIA $193 \AA$
1 million Kelvin Corona/flare plasma

AIA $131 \AA$
10 million Kelvin
Flaring regions

Near-Earth Space Observation

Solar Dynamic Observatory (SDO) Satellite

- Launched in : February 11, 2010 Orbit: $\sim 35,000$ km
- HMI: Studies oscillation and magnetic field at photosphere
- AIA: Studies the sun in multiple wavelength (white light, Seven EUV \& two UV)
- EVE: Studies solar EUV irradiance

Space based Observation

- Lagrangian points: Zones in space where the gravitational and centrifugal force of two bodies balance out
- L1 ~1.5 million km
- Spacecraft in L1: SOHO DSCOVR, ACE, Wind

Sun-Earth

Interplanetary Magnetic Field (IMF)

- Solar magnetic field, carried by the solar wind into interplanetary space
- Note that the sun rotates
- Causes the solar wind twist into an Archimedean spiral

Magnetic Reconnection

- Breaking and reconnecting of oppositely directed magnetic field lines
- Happens in highly conductive plasma
- Magnetic energy converts to kinetic and thermal energy
- Accelerates particles
- Solar flares, CMEs and accretion disks around black holes

Magnetosphere

- A cavity formed by Earth's magnetic field
- Highly dynamic
- The solar wind compresses its sunward side to a distance of only 6 to 10 times R_{\oplus} and its nightside to possibly $100 \mathrm{R}_{\oplus}$

Bow shock

- A shock wave on the sunward of the magnetosphere
- Formed by interaction between supersonic solar wind with the Earth's magnetic field

$$
\mathrm{R}_{\oplus}=6,371(\mathrm{~km})
$$

Magnetopause

- Boundary between the magnetosphere and solar wind
- Total pressure = thermal+ dynamic + magnetic

$$
\begin{aligned}
& \mathbf{P}=\mathbf{n} k_{B} T_{i}+n m_{i} V^{2}+\frac{B^{2}}{2 \mu_{0}} \\
& \mathrm{k}_{\mathrm{B}} \sim 10^{-23}
\end{aligned}
$$

Parameters		Solar Wind	Magnetosphere
$\mathrm{k}_{\mathrm{B}} \mathrm{T}$	$[\mathrm{keV}]$	0.01	5
n	$\left[\mathrm{cm}^{-3}\right]$	5	0.1
V	$[\mathrm{~km} / \mathrm{s}]$	400	50
B	$[\mathrm{nT}]$	5	55
$\mathrm{P}_{\text {TH }}$	$[\mathrm{nPa}]$	0.01	0.08
$\mathrm{P}_{\text {DYN }}$	$[\mathrm{nPa}]$	1.3	$\mathbf{0 . 0 0 0 4}$
$\mathrm{P}_{\mathrm{B}} \quad[\mathrm{nPa}]$	0.01	$(1.2$	

Radiation belts

- Donut-shaped regions encircling Earth
- At 1.2 to $6 \mathrm{R}_{\oplus}$
- High-energy particles, mostly electrons and ions, are trapped by Earth's magnetic field

Inner belt: part of plasmasphere and corotates with the Earth
proton energy range: $100 \mathrm{keV}-100$ MeV

Outer belt: Extends on to the magnetopause on the sunward and to about $6 R_{\oplus}$
Proton energy range: 0.1 to 10 MeV

$$
R_{\oplus}=6,371(\mathrm{~km})
$$

Geomagnetic Storm

- A temporary disturbance of magnetosphere
- Last for several days
- Dst index

Substorm

- A localized \& brief disturbance of magnetosphere
- Last for few hours
- AE index

Geomagnetic Data

Aurora Forecast

Auroral oval:

- Region where the auroras typically occur
- Elliptical region around each geomagnetic pole, from $\sim 56^{\circ}$ at midnight $\sim 75^{\circ}$ at noon
- Becomes wider during geomagnetic storm

GEOMAGNETIC DST INDICES

Disturbance storm time

 (Dst) indexRing current is located at ~ 3 to 8 R_{\oplus}, circulates clockwise (when viewed from the north)

- The current produces a B-field in opposition of B_{\oplus}
- Dst measures the intensity of the ring current
- Deviation of H (north-south) component of the magnetic field

Disturbance storm time (Dst) index

- Four stations near the geomagnetic equator
- Magnetic equator: There is no vertical (Z) component to the magnetic field
- The magnetic equator is not fixed, but slowly changes

Auroral Electrojet (AE) index

Measure of auroral zone magnetic activity
Produced by enhanced ionospheric currents flowing below and within the auroral oval

Derived from variations in the horizontal component observed at selected (10-13) observatories

- AU and AL indices are respectively the largest and the smallest values in the horizontal component

The difference, AU minus AL, defines the AE index

Geomagnetic Kp index

- 3-hourly range index
- 13 geomagnetic observatories (ranging from 44° to 60° northern or southern geomagnetic latitude)
- Scaled from 0 to 9 , expressed in thirds of a unit, e.g. 5 - is $4 \frac{2}{3}, 5$ is $5,5+$ is $\frac{1}{3}$

All sky camera

- Used in meteorology, astronomy and visual observation of auroras
- Capture a photograph of the entire sky
- Typically equipped with a fisheye lens

Where To Find Data For Space Weather Prediction

https://solarmonitor.org/index.php

https://helioviewer.orgl

REAL TIME SOLAR WIND

https://www.swpc.noaa.gov/products/real-time-solar-wind

AURORA - 30 MINUTE FORECAST

SOUTHERN HEMISPHERE
Aurora Forecast OVATION-Prime Model

Forecast For: 2018-04-27 07:55 UT Hemispheric Power: 9.94 GW (Typical Range 5 to 150 GW)

World Data Center for Geomagnetism, Kyoto

operated by
Data Analysis Center for Geomagnetism and Space Magnetism
Graduate School of Science, Kyoto University
Kitashirakawa-Oiwake Cho, Sakyo-ku
Kyoto 606-8502, JAPAN
TEL: +81-75-753-3929 (075-753-3929, inside Japan)
FAX: +81-75-722-7884 (075-722-7884, inside Japan)

ICsU

VDC for Geomag.
WORLD DATA SYSTEM

1. World Data Center for Geomagnetism, Kyoto

Data Analysis Center for Geomagnetism and Space Magnetism,
Research, Publication list, Staff, Access Guide and Map, WDC system and others
Geomag.
KYOTO $\begin{array}{r}\text { WDC for Geomag. } \\ \text { KYOTO }\end{array} \quad \begin{array}{r}\text { WDC for Geomag. } \\ \text { KYOTO }\end{array}$

WDC for Geomag | kYoro |
| :--- |

2. What is the Earth's magnetic field?

Magnetic north, geomagnetic and magnetic poles, Geomagnetic elements,
Geomagnetic field observation and collection of the data (Geomagnetic observatories on the Google Earth), International Geomagnetic Reference Field and others
3. Geomagnetic Data Service

4. INTERMAGNET Kyoto GIN Home Page

QL monitor of INTERMAGNET data, about INTERMAGNET and others
5. Link to other sites

Kyoto University, ICSU/WDS's, Geomagnetic Observatories, Societies and others

http://wdc.kugi.kyoto-u.ac.jp/

All sky camera

Cades Observatory, Kingston, TAS, Australia

- Sodankylä Geophysical Observatory http://www.sgo.fi/Data/RealTime/allsky. php
- Tromso station, Norway:
http://polaris.nipr.ac.jp/~acaurora/auror a/Tromsol
- Kiruna station, Sweden: http://www2.irf.se/allsky/data.htm|
- Syowa (or Showa) station, South Pole: http://polaris.nipr.ac.jp/~acaurora/auror a/Syowal

Extreme Geomagnetic Storms

Space Weather Impacts

- GPS systems
- The charged plasma of the ionosphere bends the path of the GPS radio signal
- Satellite communications
- Radio signals propagating to and from a satellite in orbit are affected by ionosphere condition
- Satellite Drag
- Especially for satellite in low Earth orbit (LEO)
- air resistance drags them closer to the Earth
- International Space Station \& Hubble telescopes operate in LEO

1. Carrington Event

- September 1859, cycle 10
- Major CME arrived in ~ 18 hours
- Caused Global telegraph lines to spark
- Northern lights were observed as far south as Cuba, Hawaii and Tahiti
- Estimated total economic impact on modern technology : $\$ 2$ trillion (National Academy of Science)

Sunspot of September 1, 1859 as sketched by Richard Carrington

2. Quebec Blackout

March 13, 1989

- Caused a 12-hour blackout in Quebec
- Kept the Montreal metro shut and closed the Doral Airport

Caused a malfunction of the Space shuttle Discovery

- Auroras could be seen as far south as Florida and Cuba

3. Halloween Geomagnetic Storm

November 20, 2003

Cycie 23, 2-3 years affter solar maximum

17 major flares
Solar \& Heliospheric Observatory (SOHO) satellite failed temporary

- Auroras could be seen in Texas \& Florida

Check following data:

Solar data:

- Magnetogram data
- sunspot data
- List of flares

If you are interested about CMEs: https://cdaw.gsfc.nasa.gov/CME_list/

Geomagnetic data

- Dst index
- Kp index

All Sky Camera data:

- Tromso station, Norway
- Kiruna station, Sweden

