Space Climate

Shabnam Nikbakhsh

Aalto University May 2018

The Sun

R_o= 695,700 (km)

Core:

- Nuclear fusion process H \rightarrow He Temp: ~15 Million Kelvin, radius: ~0.2 to 0.25 R_{\odot}

Radiation Zone:

- Energy moves outward as electromagnetic radiation
- Temp: ~8 MK, radius: ~300,000 km

Convection Zone:

- Consist of plasma, generates <u>magnetic field</u> ~200,000 km, 30% of the radius

Photosphere:

- Visible surface, Radius: ~500 km thick, T: 5800 K
- Features can be seen in this layer: Active regions, sunspots, bright faculae, granules

Chromosphere:

- $\sim 10,000$ km thick
- Features can be seen in this layer: filaments or prominences, spicules

Corona:

Extremely hot (over 1,000,000 kelvin) but tenuous plasma <10⁹ cm⁻³

Solar Active Regions (ARs)

- <u>Might</u> produce sunspots
- B ~1000 or more times stronger than the average magnetic field of the Sun
- <u>Most</u> of flares & CMEs are originated from these regions

Sunspots:

- <u>Cooler</u> than the surrounding
- Magnetic field strength 0.1 to 0.3 Tesla
- Temp: ~ 4000 K
- Size: 16 km to 160,000 km

Solar flare:

- Sudden explosion of energy
 Release lot of radiation into
- Release lot of radiation into space
- Sometimes accompanied by a CME

Coronal Mass Ejection (CME):

- Sudden outflow of plasma
- Often associated with flares
- Might reach to the Earth 1-2 days

SDO/AIA 193 2012-06-03 17:45:08 U1

Coronal Holes

- Appear in the Corona
- Observed in the <u>EUV</u> and <u>soft X-ray</u> images
- Cooler and less dense than surrounding plasma
- Associated with <u>open and unipolar</u> <u>magnetic field lines</u> which allows the solar wind to escape more easily to the space
- Produces the fast solar winds, referred to as high speed streams
- Develop at <u>any time</u>, but more common and persistent during <u>solar minimum</u>

Solar Wind

- Continuous stream of charge particles
- Average speed <u>400 (km/s)</u>
- Fast solar wind (~750 km/s): spews from coronal holes
- Slow solar wind (~350 km/s): origin is unknown

Solar Observation

150-Foot Solar Tower at Mount Wilson Observatory Solar Observing Optical Network (SOON) Observatories

Magnetogram

27.06.1998

Observes: Iron at 8468 Å

Sunspot Drawing

01.01.2015

Observes: $H\alpha$ at 6563 Å

HMI Dopplergram Surface movement Photosphere

HMI Magnetogram Magnetic field polarity Photosphere

HMI Continuum Matches visible light Photosphere

AIA 1700 Å 4500 Kelvin Photosphere

AIA 4500 Å 6000 Kelvin Photosphere

AIA 1600 Å 10,000 Kelvin Upper photosphere/ Transition region

AIA 304 Å 50,000 Kelvin Transition region/ Chromosphere

AIA 171 Å 600,000 Kelvin Upper transition Region/quiet corona

AIA 193 Å 1 million Kelvin Corona/flare plasma

AIA 211 Å 2 million Kelvin Active regions

AIA 335 Å 2.5 million Kelvin Active regions

AIA 094 Å 6 million Kelvin Flaring regions

AIA 131 Å 10 million Kelvin Flaring regions

Near-Earth Space Observation

Solar Dynamic Observatory (SDO) Satellite

- Launched in : February 11, 2010 Orbit: ~35,000 km
- HMI: Studies oscillation and magnetic field at photosphere
- AIA: Studies the sun in multiple wavelength (white light, Seven EUV & two UV)
 - EVE: Studies solar EUV irradiance

Space based Observation

- Lagrangian points: Zones in space where the gravitational and centrifugal force of two bodies balance out
- L1 ~1.5 million km
- Spacecraft in L1: SOHO DSCOVR, ACE, Wind

Sun-Earth

Interplanetary Magnetic Field (IMF)

- Solar magnetic field, carried by the solar wind into interplanetary space
- Note that the <u>sun rotates</u>
- Causes the solar wind twist into an <u>Archimedean spiral</u>

Magnetic Reconnection

- <u>Breaking</u> and <u>reconnecting</u> of <u>oppositely</u> directed magnetic field lines
- Happens in highly conductive plasma
- Magnetic energy converts to kinetic and thermal energy
- <u>Accelerates</u> particles
- Solar flares, CMEs and accretion disks around black holes

Magnetosphere

- A cavity formed by Earth's magnetic field
- Highly dynamic
- The solar wind compresses its sunward side to a distance of only 6 to 10 times R_{\oplus} and its nightside to possibly 100 R_{\oplus}

Bow shock

- A shock wave on the sunward of the magnetosphere
- Formed by interaction between supersonic solar wind with the Earth's magnetic field

 R_{\oplus} = 6,371 (km)

Magnetopause

- Boundary between the magnetosphere and solar wind
- Total pressure = thermal+ dynamic + magnetic

$$P = n k_B T_i + n m_i V^2 + \frac{B^2}{2\mu_0}$$

k_B ∼10⁻²³

Parameters		Solar Wind	Magnetosphere			
k _B T	[keV]	0.01	5			
n	[cm ⁻³]	5	0.1			
V	[km/s]	400	50			
В	[nT]	5	55			
P _{TH}	[nPa]	0.01	0.08			
P _{DYN} [nPa]		1.3	0.0004			
P _B	[nPa]	0.01	1.2			

Radiation belts

- Donut-shaped regions encircling Earth
- At 1.2 to 6 R_{\oplus}
- High-energy particles, mostly electrons and ions, are trapped by Earth's magnetic field
- Inner belt: part of plasmasphere and corotates with the Earth
- proton energy range: <u>100 keV -100</u> <u>MeV</u>
- Outer belt: Extends on to the magnetopause on the sunward and to about 6 R_{\oplus}
- Proton energy range: <u>0.1 to 10 MeV</u>

 R_{\oplus} = 6,371 (km)

Geomagnetic Storm

- A <u>temporary</u> disturbance of magnetosphere
- Last for several <u>days</u>

Substorm

- A <u>localized & brief</u> disturbance of magnetosphere
- Last for few hours
- AE index

• Dst index

Geomagnetic Data

Auroral oval:

- Region where the auroras typically occur
- Elliptical region around each geomagnetic pole, from ~56° at midnight ~75° at noon
- Becomes wider during geomagnetic storm

Disturbance storm time (Dst) index

- Ring current is located at ~ 3 to 8 R_⊕, circulates <u>clockwise</u> (when viewed from the north)
- The current produces a B-field in opposition of $\mathsf{B}_{_{\bigoplus}}$
- Dst measures the <u>intensity</u> of the ring current
- Deviation of H (north-south) component of the magnetic field

Disturbance storm time (Dst) index

- Four stations near the geomagnetic equator
- Magnetic equator: There is no vertical (Z) component to the magnetic field
- The magnetic equator is not fixed, but slowly changes

Auroral Electrojet (AE) index

- Measure of <u>auroral zone</u> magnetic activity
- Produced by enhanced <u>ionospheric</u> <u>currents</u> flowing below and within the auroral oval
- Derived from variations in the horizontal component observed at selected (10-13) observatories

- AU and AL indices are respectively the largest and the smallest values in the horizontal component
- The difference, AU minus AL, defines the AE index

Geomagnetic Kp index

- 3-hourly range index
- 13 geomagnetic observatories (ranging from 44° to 60° northern or southern geomagnetic latitude)
- Scaled from 0 to 9, expressed in thirds of a unit, e.g. 5- is $4\frac{2}{3}$, 5 is 5, 5+ is $\frac{1}{3}$

All sky camera

- Used in meteorology, astronomy and visual observation of auroras
- Capture a photograph of the entire sky
- Typically equipped with a fisheye lens

Where To Find Data For Space Weather Prediction

https://solarmonitor.org/index.php

https://helioviewer.org/

https://www.swpc.noaa.gov/products/real-time-solar-wind

AURORA - 30 MINUTE FORECAST

https://www.swpc.noaa.gov/products/aurora-30-minute-forecast

World Data Center for Geomagnetism, Kyoto

WDC for Geomag. KYOTO			WDC for Geomag. KYOTO	WDC for Geomag. KYOTO	WDC for Geomag. KYOTO	WDC for Geomag. KYOTO				WE			
Data Analysis Cente Graduate School of Kitashirakawa-Oiwa Kyoto 606-8502, JAI	er for Geomagnetism Science, Kyoto Univ ake Cho, Sakyo-ku PAN	and Space Magnetis ersity	m					MORLED DATA CENTRE MORCECOMAGNETLEM	WORLD DATA SYSTE	S C			
TEL: +81-75-753-39 FAX: +81-75-722-78	29 (075-753-3929, 84 (075-722-7884,	inside Japan) inside Japan) _{voto}								WE			
		-	Home Page WDC	for Geomag, Kyoto E's magnetic	field? Data Service I.	-Magnet Link							
1. <u>World Data Co</u> Data Analysis Research, Pub	enter for Geomagner Center for Geomagner lication list, Staff, A	tism, <u>Kyoto</u> netism and Space Ma ccess Guide and Map	gnetism, , WDC system and o	others ^{C for Geomag.} KYOTO						wc			
2. What is the Earth's magnetic field? Magnetic north, geomagnetic and magnetic poles, Geomagnetic elements, Geomagnetic field observation and collection of the data (Geomagnetic observatories on the Google Earth), International Geomagnetic Reference Field and others													
3. <u>Geomagnetic I</u> Indices, Geom	Data Service agnetic Field Data a	t the Observatories, N	Models, Data Catalo	gue and others						WE			
4. <u>INTERMAGN</u> QL monitor of	ET Kyoto GIN Hon INTERMAGNET d	<u>ne Page</u> lata, about INTERM	AGNET and others										
5. <u>Link to other s</u> Kyoto Univers	<mark>sites</mark> sity, ICSU/WDS's, G	eomagnetic Observat	ories, Societies and o	others									

http://wdc.kugi.kyoto-u.ac.jp/

All sky camera

Cades Observatory, Kingston, TAS, Australia

- Sodankylä Geophysical Observatory http://www.sgo.fi/Data/RealTime/allsky. php
- Tromso station, Norway: <u>http://polaris.nipr.ac.jp/~acaurora/auror</u> <u>a/Tromso/</u>
- Kiruna station, Sweden: <u>http://www2.irf.se/allsky/data.html</u>

ullet

 Syowa (or Showa) station, South Pole: <u>http://polaris.nipr.ac.jp/~acaurora/auror</u> <u>a/Syowa/</u>

Extreme Geomagnetic Storms

Space Weather Impacts

- GPS systems
 - The charged plasma of the ionosphere bends the path of the GPS radio signal
- Satellite communications
 - Radio signals propagating to and from a satellite in orbit are affected by ionosphere condition
- Satellite Drag
 - Especially for satellite in low Earth orbit (LEO)
 - air resistance drags them closer to the Earth
 - International Space Station & Hubble telescopes operate in LEO

1. Carrington Event

- <u>September 1859</u>, cycle 10
- Major CME arrived in ~18 hours
- Caused Global telegraph lines to spark
- Northern lights were observed as far south as Cuba, Hawaii and Tahiti
- Estimated total economic impact on modern technology : <u>\$2 trillion</u> (National Academy of Science)

Sunspot of September 1, 1859 as sketched by Richard Carrington

2. Quebec Blackout

- March 13, 1989
- Caused a 12-hour blackout in Quebec
- Kept the Montreal metro shut and closed the Doral Airport
- Caused a malfunction of the Space shuttle Discovery
- Auroras could be seen as far south as Florida and Cuba

3. Halloween Geomagnetic Storm

- <u>November 20, 2003</u>
- Cycle 23, 2-3 years after solar maximum
- 17 major flares
- Solar & Heliospheric Observatory (SOHO) satellite failed temporary
- Auroras could be seen in Texas & Florida

Check following data:

Solar data:

- Magnetogram data
- sunspot data
- List of flares

If you are interested about CMEs: https://cdaw.gsfc.nasa.gov/CME_list/

Geomagnetic data

- Dst index
- Kp index

All Sky Camera data:

- Tromso station, Norway
- Kiruna station, Sweden