MS-E1999 Special Topics in the Finite Element Method

Exercise 2.
Do (at least) 3 of the exercise below and hand them in on Thursday May 16. Be also prepared to present the solution at the blackboard.

1. (Left from last week) Assume that $\Gamma_{N}=\emptyset$, and that the regularity estimate

$$
\|u\|_{2} \lesssim\|f\|_{0}
$$

holds. Using the Nitsche trick and the Lagrange interpolation operator to show that

$$
\left\|u-u_{h}\right\|_{0} \lesssim\left(\sum_{K \in \mathcal{C}_{h}} h_{K}^{4}\left\|\Delta u_{h}+f\right\|_{0, K}^{2}+\sum_{E \subset \Omega} h_{E}^{3}\left\|\llbracket \frac{\partial u_{h}}{\partial n_{E}} \rrbracket\right\|_{0, E}^{2}\right)^{1 / 2}
$$

2. Let us recall the following notation. $A \lesssim B$ means: there exists a positive constant C, independent of the mesh size h (or the local mesh since h_{K}, such that $A \leq C B$. With $A \approx B$ we mean $A \lesssim B$ and $B \lesssim A$.
Let K be a triangle or tetrahedron, $P_{k}(K)$ the polynomials of degree k on K, and $b_{K} \in P_{d+1}(K)$ be the bubble function on $K(d=$ the space dimension.)
Prove by scaling arguments that

$$
\|v\|_{0, K} \approx\left\|b_{K}^{1 / 2} v\right\|_{0, K} \approx\left\|b_{K} v\right\|_{0, K} \quad \forall v \in P_{k}(K)
$$

and

$$
\|\nabla v\|_{0, K} \lesssim h_{K}^{-1}\|v\|_{0, K} \quad \forall v \in P_{k}(K)
$$

3. Read the section in the lecture notes where it is shown that the discrete linear system for Stokes is of the form:

$$
\left(\begin{array}{cc}
A & B \tag{0.1}\\
B^{T} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{0} .
$$

$U \in \mathbb{R}^{N}, P \in \mathbb{R}^{M}$. Note that A is symmetric and positively definite.
Show that this can be interpreted as the discrete optimisation problem: find U which minimises the object function

$$
\begin{equation*}
\frac{1}{2} V^{T} A V-F^{T} V \tag{0.2}
\end{equation*}
$$

subject to the linear constraint

$$
\begin{equation*}
B^{T} V=G \tag{0.3}
\end{equation*}
$$

Show that the problem has a unique solution if, and only if, $N(B)=\{0\}$, or equvalently $R\left(B^{T}\right)=\mathbb{R}^{M}$, with N and R denoting the nullspace and range, respectively.
4. In the lectures we proved the stability of the lowest order Crouzeix-Raviart element, i.e. the FE pair

$$
\begin{aligned}
\boldsymbol{V}_{h} & =\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)|\boldsymbol{v}|_{K} \in\left[P_{2}(K)\right]^{2} K \in \mathcal{C}_{h}\right\} \\
P_{h} & =\left\{q \in L_{0}^{2}(\Omega)|q|_{K} \in P_{0}(K) K \in \mathcal{C}_{h}\right\}
\end{aligned}
$$

A common (miss)belief is the the same method works in 3 D , i.e, $\Omega \subset \mathbb{R}^{3}$ and

$$
\begin{align*}
\boldsymbol{V}_{h} & =\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)|\boldsymbol{v}|_{K} \in\left[P_{2}(K)\right]^{3} K \in \mathcal{C}_{h}\right\} \\
P_{h} & =\left\{q \in L_{0}^{2}(\Omega)|q|_{K} \in P_{0}(K) K \in \mathcal{C}_{h}\right\} \tag{0.4}
\end{align*}
$$

Question: does the 2D proof of stability (or even uniqueness) carry over to 3 D ?
5. Let \mathcal{C}_{h} be a partitioning into quadrilaterals and consider the Stokes pair

$$
\begin{aligned}
\boldsymbol{V}_{h} & =\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)|\boldsymbol{v}|_{K} \in\left[Q_{2}(K)\right]^{2} K \in \mathcal{C}_{h}\right\} \\
P_{h} & =\left\{q \in L_{0}^{2}(\Omega)|q|_{K} \in P_{1}(K) K \in \mathcal{C}_{h}\right\}
\end{aligned}
$$

Verify the stability. How is it with the method in 3D?
6. The lowest order quadrilateral Taylor-Hood method (continuous pressures) consists of the following spaces

$$
\begin{aligned}
& \boldsymbol{V}_{h}=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)|\boldsymbol{v}|_{K} \in\left[Q_{2}(K)\right]^{2} K \in \mathcal{C}_{h}\right\} \\
& P_{h}=\left\{q \in L_{0}^{2}(\Omega) \cap C(\Omega)|q|_{K} \in Q_{1}(K) K \in \mathcal{C}_{h}\right\} .
\end{aligned}
$$

with the mesh \mathcal{C}_{h} consists of quadrilaterals. For the case of rectangles, prove the uniqueness of the solution. Hint: use a patch of two element and the fact that Simpson's rule is exact for cubic polynomials.

