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Goals for lecture 6b	
•  Goal 1 Learn basics of Joule heating and study empirical 

methods to estimate the JH dissipation during substorms.	
•  Goal 2: Compute electron precipitation for substorms. 	
•  Goal 3: Study substorm energy budget and balance.	
	
•  Reference: Weiss, L.A, P.H. Reiff, J.J. Moses et al., Energy dissipation 

in substorms, Proceedings of the (ICS-1), Kiruna, May 1992.	



Goal 1: �
Learn basics of Joule heating and study empirical 

methods to estimate the JH dissipation during 
substorms.	



Joule heating, WJH	

•  Ahn et al. 1983, 1989; Richmond et al. 1990	

€ 

W JH= PJH dt∫

€ 

PJH = 2 ⋅ c ⋅108AL nT( ), c = 2, 3,4

•  Ostgaard et al. 2002	

€ 

PJH = 0.33 ⋅ AE ⋅109 + (0.21 ⋅ AE +1.8) ⋅109

€ 

= (0.54 ⋅ AE +1.8) ⋅109

Summer hemisphere	 Winter hemisphere	



Westward electrojet index formation	
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Following AL description 
IL index is formed based on 
IMAGE ground-based 
magnetic measurements in 
UT-sector 16-03 UT.	

UT-sector 16-03 UT	



Data to westward electrojet index	

12 Kyoto observatories	

31 IMAGE observatories	

AL index	 IL index	 GL, CL etc. indices	



Why meridional chains?	
About 90% of the substorms observed north from Abisko (ABK), which is the 
standard AL station in IMAGE time sector (Tanskanen et al., JGR 2002)	
	
à Kyoto AL underestimates and misses large portion of geomagnetic activity. 	
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Comparing different JH estimates	
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Joule heating for 1997 and 1999 substorms 	
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Goal 2: �
Compute electron precipitation for substorms. 	



Electron precipitation , WEP	

Ahn et al. 1983	
	
Spiro et al. 1982 	

		
Ostgaard et al. 2002	

€ 

PEP W( ) = 1.75 ⋅ AE
100nT +1.6( ) ⋅1010

€ 

PEP W( ) = 2 ⋅ 4.4 ⋅ AL1
2 − 7.6( ) ⋅109

€ 

PEP W( ) = 2 ⋅ 0.8 ⋅108 ⋅ AL nT( )

€ 

W EP= PEP dt∫

Both hemispheres included.	



http://wdc.kugi.kyoto-u.ac.jp/aedir/	

Where to get AE/AL/AU index?	



Where to get IE/IL/IU index?	

http://space.fmi.fi/image/il_index/	



Comparing different EP estimates	
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Peak amplitude AL/IL/SML	



Goal 3: �
Examine substorm energy budget and balance	



An example substorm: June 23, 1997	

Medium-sized isolated 
substorm during year of 
low solar activity. 
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Second example: March 1, 1999	

An intense stormtime 
substorm occurring 
during storm recovery 
phase at 1999.	
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Substorm energy budget�
�

Tanskanen et al. 2002; Østgaard and Tanskanen, AGU Monograph 2004	

l  The ionosphere (joule heating and electron precipitation) receives the major part of the energy 
during storms and substorms, dissipating at least 50% during storms and even over 70 % 
during substorms.  

l  Joule heating, JH; Electron precipitation, EP; Ring current, RC; Plasmoid and plasma sheet 
heating, PS 

Average energy budget:	 NEW view:	

RC 90%

Others 5%
JH 5%

Others 4%

RC 11%

JH 32%
EP 21%

PS 32%



Input output non-balanced	
à Need to re-scale epsilon 	
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Non-storm substorm on 15 August 2001 at 2:20 - 6:20 UT	

•  Energy input:     Wε = 1.0*1015 J	
	
•  Energy  output: WJH + WEP = 1.4*1015 J	
	
•  Other dissipation channels:	
- Ring current 	 	dissipation small	
- Plasmoid	 	 	no data	
- Plasma sheet heating	 	no data	

--> Wε clearly underestimates the input	



Rescaled epsilon parameter	

•  Theoretical and empirical input-output analysis suggest that the epsilon parameter 
needs to be scaled by a factor of 1.5 to agree with current energy sink estimates.	
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εscaled = 4π
µ0
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Heliospheric energy budget	



Discuss with your neighbour:	
	

•  What are the main dissipation channels in ionosphere?	
•  What  is  the  main  ionospheric  dissipation  channel 

during substorms?	
•  What is the typical energy dissipation through auroral 

electron precipitation?	
•  What could cause differences in northern and 	
     southern hemisphere dissipation?	



Ground induced currents, GICs 	
– source of errors in dissipation estimates	

•  Magnetospheric variations observed at the 
Earth’s surface are primarily caused by 
magnetospheric and ionospheric currents, and 
secondarily affected by currents induced within 
the Earth. 	

•  However, inductive part can be up to 40% of the 
IL during substorm onset, while during other 
substorm phases it is about 20%.	

•  For magnetic storms the inductive part is about 
30% during the storm main phase and 20% 
during other storm phases. 	
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