GREEN FUNCTION

$$
\begin{aligned}
& L(\nabla) f(\bar{r})= g(\bar{r}) \\
& f(\bar{r})=-\int G\left(\bar{r}, \bar{r}^{\prime}\right) g\left(\bar{r}^{\prime}\right) d V^{\prime} \\
& L(\nabla) f(\bar{r})= \int-L(\nabla) G\left(\bar{r}-\bar{r}^{\prime}\right) g\left(\bar{r}^{\prime}\right) d V^{\prime}=g(\bar{r}) \\
& \int \delta\left(\bar{r}-\bar{r}^{\prime}\right) g\left(\bar{r}^{\prime}\right) d V^{\prime}=g(\bar{r}) \\
& L(\nabla) G\left(\bar{r}-\bar{r}^{\prime}\right)=-\delta\left(\bar{r}-\bar{r}^{\prime}\right)
\end{aligned}
$$

G.F. $=$ field of a point source.

ELECTROSTATIC J

$$
\nabla^{2} \phi=-\frac{\rho}{\varepsilon}
$$

$$
Q \cdot \frac{r}{} \times \phi=\frac{Q}{4 \pi \varepsilon r}
$$

$$
\begin{aligned}
& \phi(\bar{r})=\int \frac{\rho\left(\bar{r}^{\prime}\right) d V^{\prime}}{4 \pi \varepsilon\left|\bar{r}-\bar{r}^{\prime}\right|} \\
& =\int G\left(\bar{r}-\bar{r}^{\prime}\right) \rho\left(\bar{r}^{\prime}\right) d v^{\prime}
\end{aligned}
$$

MAGNETOSTATICS

$$
\begin{aligned}
& \nabla \times \bar{H}=\bar{J} \quad \Rightarrow \nabla \times(\nabla \times \bar{A})=\mu \bar{J} \\
& \nabla \cdot \bar{B}=0 \quad \Rightarrow \quad \bar{B}=\nabla \times \bar{A} \\
& \nabla^{2} \bar{A}=-\mu \bar{\jmath} \\
& \bar{A}(\bar{r})=\int \frac{\mu \bar{\partial}\left(\bar{r}^{\prime}\right)}{4 \pi\left|\bar{r}-\bar{r}^{\prime}\right|} d V^{\prime}
\end{aligned}
$$

DYNAMICS.
(ISOTROPIC)

$$
\begin{aligned}
& \nabla \times \bar{E}=-j \omega \bar{B}=-j \omega \mu \bar{H} \\
& \nabla \times(\nabla \times \bar{E})=-j \omega \mu \nabla \times \bar{H}=-j \omega \mu(\bar{j}+j \omega \varepsilon \bar{E}) \\
& -\nabla \times(\nabla \times \bar{E})+\underbrace{\omega^{2} \mu \varepsilon \bar{E}=+j \omega \mu \bar{j}}_{k^{2}} \\
& \left(\nabla \nabla \times \overline{\bar{I}}+k^{2} \bar{I}\right) \cdot \bar{E}=j \omega \mu \bar{j}
\end{aligned}
$$

INVERSION?

$$
\bar{E}(\bar{r})=-j w \mu \int_{\text {GREEN DYAD }} \overline{\bar{G}}\left(\bar{r}-\bar{r}^{\prime}\right) \cdot \bar{j}\left(\bar{r}^{\prime}\right) d v^{\prime}
$$

\downarrow GREEN DYADIC!

$$
\left(\overline{\bar{I}}+\frac{\nabla \nabla}{k^{2}}\right) G\left(\bar{r}-\bar{r}^{\prime}\right)
$$

$$
\begin{equation*}
t \frac{e^{-j k|\bar{r}-\bar{r}|}}{4 \pi|\bar{r}-\bar{r}|} \tag{1}
\end{equation*}
$$

$$
\bar{E}=\bar{E}_{1}+\bar{E}_{2}
$$

$$
\begin{aligned}
& \bar{E}_{1}(\dot{r})=-j \omega \mu \int \frac{e^{-j k|\bar{r}-\bar{r}|}}{4 \pi|\bar{r}-\bar{r}|} \bar{j}(\bar{r}) d v^{\prime} \\
& \bar{E}(\bar{r})=-\nabla \phi-j \omega \bar{A} \\
& \nabla \times \bar{E}+{\underset{\sim}{\gamma}}_{\boldsymbol{j} \times \bar{A}}^{\omega} \bar{B}=0 \Rightarrow \nabla \times(\underbrace{\bar{E}+j \omega \bar{A}}_{-\nabla \phi})=0 \\
& \nabla^{2} \phi+k^{2} \phi=-\rho / \varepsilon \\
& \nabla^{2} \bar{A}+k^{2} \bar{A}=-\mu \bar{J} \\
& \downarrow \\
& \nabla^{2} \phi+k^{2} \phi=0 \\
& \frac{1}{r}(r \phi)^{\prime \prime}+k^{2} \phi=0 \\
& (r \phi)^{\prime \prime}+k^{2}(r \phi)=0 \\
& \nabla^{2} \phi=0 \\
& \frac{1}{r}(\underbrace{r \phi})^{\prime \prime}=0 \\
& A r+B \\
& \phi=A+\frac{B}{r} \\
& r \phi=e^{ \pm j k r} \\
& G\left(\bar{r}-\bar{r}^{\prime}\right)=\frac{e^{-j k\left|\bar{r}-\bar{r}^{\prime}\right|}}{4 \pi\left|\bar{r}-\bar{r}^{\prime}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{1}(\dot{r})=-j \omega \mu \int \frac{e^{-j k\left|\bar{F}-\bar{r}^{\prime}\right|}}{4 \pi\left|\bar{r}-\bar{r}^{\prime}\right|} \bar{j}\left(\bar{r}^{\prime}\right) d V^{\prime} \quad\binom{V E(T O R}{\operatorname{POTENTIAL}} \\
& \bar{E}=-\nabla \phi-j \omega \bar{A} \\
& t \quad \int \frac{\mu \bar{j} e^{-j k|\bar{r}-\bar{r}|}}{4 \pi\left|\bar{r}-\bar{r}^{\prime}\right|} d v^{\prime} \\
& \bar{E}_{2}(\bar{F})=? \\
& \phi(\bar{r})=\int \frac{\rho\left(\bar{r}^{\prime}\right) e^{-j k|\bar{r}-\bar{r}|}}{4 \pi \varepsilon\left|\bar{r}-\bar{r}^{\prime}\right|} d V^{\prime} \\
& \text { continuity } \\
& \nabla \cdot(\nabla \times \bar{H}=\bar{j}+j \omega \bar{D}) \Rightarrow \nabla \cdot \bar{j}=-j \omega \underbrace{\nabla \cdot \bar{D}}_{\rho} \\
& \phi(r)=\int \frac{j \nabla \cdot \bar{j}\left(\bar{r}^{\prime}\right) e^{-j k\left|\bar{r}-\bar{r}^{\prime}\right|}}{\omega 4 \bar{n} \varepsilon\left|\bar{r}-\bar{r}^{\prime}\right|} d v^{\prime} \\
& \rho=\frac{j \nabla \cdot \bar{j}}{\omega} \\
& =j \omega \mu \int \frac{\nabla \cdot \underbrace{\omega^{2} \mu \varepsilon}_{b^{2}} 厶^{\bar{b}} e^{-j \omega \bar{r}-\bar{r}^{\prime} \mid}}{\omega v^{\prime}} \\
& \bar{E}_{2}(\bar{r})=-j \omega \mu \int \frac{\nabla \nabla}{k^{2}} \frac{e^{-i \psi \vec{\sigma}-\bar{\sigma}^{\prime} \mid}}{4 \overline{\bar{n}}\left|\bar{\sigma} \dot{\sigma}^{\prime}\right|} \cdot \bar{j} d v^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}(\bar{r})=-j \omega \mu \int \overline{\bar{G}}\left(\bar{r}-\bar{r}^{\prime}\right) \cdot \bar{j}\left(\dot{r}^{\prime}\right) d v^{\prime} \\
& \bar{H}(\bar{r})=\int \nabla G\left(\bar{F}-\bar{r}^{\prime}\right) \times \bar{j}\left(\overline{r^{\prime}}\right) d V^{\prime} \quad \frac{\nabla \times \bar{E}}{-j \omega \mu}=\bar{H} \\
& \bar{E}_{d}=j \eta_{0} \cdot \bar{H} \\
& \bar{j}_{d}=-\frac{1}{j \eta_{0}} \bar{j}_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{H}_{d}=\frac{E}{j \eta_{0}} \\
& \mu_{d}=\eta_{0}^{2} \varepsilon \\
& \bar{E}_{d}=-j \omega \mu_{d} \int \overline{\bar{G}}\left(\bar{r}-\bar{r}^{\prime}\right) \cdot \bar{\jmath}_{d}\left(\bar{r}^{\prime}\right) d v^{\prime} \\
& j \eta_{0} \bar{F}=-j \omega \eta_{0}^{2} \varepsilon \int \overline{\bar{G}}\left(\bar{r}-\bar{r}^{\prime}\right) \cdot \frac{-\bar{j}_{m}}{j \eta_{0}} d v^{\prime} \\
& \bar{H}(x)=-j \omega \varepsilon \int \bar{G}\left(\bar{r}-\bar{F}^{\prime}\right) \cdot \bar{\partial}_{m} d v^{\prime} \\
& \bar{E}(\bar{r})=-\int \nabla G\left(\bar{r}-\bar{r}^{\prime}\right) \times \bar{\jmath}_{m} d V^{\prime}
\end{aligned}
$$

plane wave, source.free medium

$$
\begin{aligned}
& \nabla e^{-j \bar{k} \cdot \bar{\sigma}}=-j \bar{k} e^{-j \bar{k} \cdot \bar{\sigma}} \\
& \bar{\xi}, \overline{\bar{M}}, \bar{\xi}, \bar{\xi} \\
& \nabla \times \bar{E}=-j \bar{k} \times \bar{E}=-j \omega \bar{B}=-j \omega \overline{\bar{H}} \cdot \bar{H}-j \omega \bar{j} \cdot \bar{E} \\
& \overline{\bar{\mu}} \cdot \bar{H}=\frac{\bar{k}}{\omega} \times \bar{E}-\overline{\bar{\zeta}} \cdot \bar{E} \\
& \bar{H}=\bar{\mu}^{-1} \cdot\left(\frac{\bar{k} \times \bar{I}}{\omega}-\bar{\zeta}\right) \cdot \bar{E} \\
& \nabla \times \bar{H}=-j \bar{k} \times \bar{H}=j \omega \overline{\bar{\varepsilon}} \cdot \bar{E}+j \omega \bar{\xi} \cdot \bar{H} \\
& \overline{\dot{\varepsilon}} \cdot \bar{E}=-\frac{\bar{k} \times \overline{\bar{I}}}{\omega} \cdot \bar{H}-\bar{\xi} \cdot \bar{H}=-\left(\bar{\xi}+\frac{\bar{\xi} \times \bar{I}}{\omega}\right) \cdot \bar{H} \\
& \bar{\varepsilon} \cdot E=-\left(\bar{\xi}+\frac{\bar{k} \times \bar{I}}{\omega}\right) \cdot \dot{j}^{-1} \cdot\left(\frac{\bar{k} \times \bar{I}}{\omega}-\bar{j}\right) \cdot \bar{E} \\
& {\left[\overline{\bar{\varepsilon}}+\left(\bar{\xi}+\frac{\bar{k} \times \overline{\bar{I}}}{i}\right) \cdot \overline{\bar{\mu}}^{-1} \cdot\left(\frac{\bar{k} \times \bar{I}}{\omega}-\overline{\bar{j}}\right)\right] \cdot \bar{E}=0} \\
& \overline{\bar{D}}_{E}\left(\frac{\bar{k}}{\omega}\right) \cdot \bar{E}=0
\end{aligned}
$$

BI. ISOTROPIC

$$
\varepsilon=\varepsilon_{1} \varepsilon_{0}
$$

$$
\mu=\mu_{r} \mu_{0}
$$

$$
\begin{array}{ll}
\bar{\varepsilon}=\varepsilon \bar{I} & \dot{\mu}=\mu \bar{I} \\
\bar{\xi}=\hat{\xi} \bar{I} & \bar{\xi}=J^{\bar{I}} \\
\dagger & \\
& (x-j k) \sqrt{\mu_{0} \varepsilon_{0}}
\end{array} \quad\left(\begin{array}{l}
(x+j k) \sqrt{\mu_{0} \varepsilon_{0}}
\end{array}\right.
$$

$$
\overline{\bar{D}}_{E}=\varepsilon \dot{\bar{I}}+\left(\xi \bar{I}+\frac{\overline{\mathrm{F}} \times \overline{\tilde{I}}}{\omega}\right) \cdot \frac{\dot{I}}{\mu} \cdot\left(\frac{\overline{\mathrm{E}} \times \overline{\bar{I}}}{\omega}-\zeta \dot{I}\right)
$$

$$
=\frac{1}{\omega^{2} \mu}\left(\omega^{2} \mu \varepsilon \bar{I}+(\omega \xi \bar{I}+\bar{k} \times \bar{I}) \cdot(\bar{k} \times \bar{I}-w J \dot{I})\right)
$$

$$
\mu_{0} \varepsilon_{0}\left(x^{2}+k^{2}\right)
$$

$$
=\frac{k_{0}^{2}}{\omega_{\mu}^{2}}[\underbrace{\bar{I}}_{\dot{\bar{B}}}(\underbrace{n^{2}=\mu_{r} \varepsilon_{r}}_{\left.\mu_{1},-x^{2}-k^{2}\right)-2 j k \frac{\bar{k} \times \dot{I}}{k_{0}}+\frac{\bar{k} \times(\bar{k} \times \bar{I})}{k_{0}^{2}}}
$$

$$
\begin{aligned}
k_{0}^{2} \bar{B} & =\left(\bar{k} \times \overline{\bar{I}}-j k_{+} \overline{\bar{I}}\right) \cdot(\bar{k} \times \dot{\bar{I}}+j k \overline{\bar{I}}) \\
& =\bar{k} \times(\bar{k} \times \bar{I})-j \overline{\bar{I}} \times \dot{\bar{I}}\left(k_{+}-k_{-}\right)+k_{+} k-\bar{I} \\
k_{+} & =k_{0}\left(\sqrt{n^{2}-x^{2}}+k\right), \quad k_{-}=k_{0}\left(\sqrt{n^{2}-x^{2}}-k\right)
\end{aligned}
$$

SOLUTION: $\quad \operatorname{det}\left(\bar{k} \times \overline{\bar{I}}-j k_{+} \overline{\bar{I}}\right)=0$

$$
\begin{aligned}
& \left(\overline{k_{r}} \times \overline{\bar{I}}-j k_{+} \overline{\bar{I}}\right) \times \underset{\times}{ }\left(k_{r} \vec{I}-j k_{+} \overline{\bar{I}}\right) \\
& \bar{K} \times \bar{I} \times \bar{W} \times \bar{I}=2 E \bar{E} \\
& =\underbrace{2 \bar{k}-2 j k_{+} \bar{k} \times \bar{I}-2 k_{+}^{2} \bar{I}}_{:\left(\bar{k} \times \bar{I}-j k_{+} \bar{I}\right)} \\
& \bar{k} \times \vec{I} \times \vec{I}=\bar{k} \times \vec{I} \\
& \overline{\bar{I}} \dot{y} \overline{\underline{I}}=2 \bar{I} \\
& \bar{K} \times \vec{I}: \bar{L} \times \bar{I}=2 \bar{L} \cdot \bar{K} \\
& =-2 j k_{+} \bar{k} \cdot \bar{k}-4 j k_{+} \bar{k} \cdot \bar{k}+j 6 k_{+}^{3} \\
& d t=-j k_{+}\left(\bar{k} \cdot \bar{k}-k_{+}^{2}\right) \\
& =0 \quad \Rightarrow \quad \bar{k} \cdot \bar{k}=k_{t}^{2} \\
& \bar{k}= \pm \bar{u} k_{+}
\end{aligned}
$$

POLARIZATION?

$$
\begin{aligned}
& \left(\bar{k} \times \bar{I}-j k_{+} \overline{\bar{I}}\right) \cdot \bar{E}_{0}=0 \\
& \text { } \\
& \bar{u} k_{+} \\
& \Downarrow \\
& \bar{u} \times \bar{E}_{0}=j \bar{E}_{0} \\
& \xrightarrow[y]{\stackrel{L}{x}_{x}^{\longrightarrow}} \bar{h} \\
& \bar{u} \times\left(\bar{u}_{x}-j \bar{u}_{y}\right)=\bar{u}_{y}+j \bar{u}_{x} \\
& =j\left(\bar{u}_{x}-j \bar{u}_{y}\right)
\end{aligned}
$$

RHCP!

