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Abstract. In this paper a bilevel programming model is proposed for
modeling the interaction between electricity retailers and consumers
endowed with energy management systems capable of providing demand
response to variable prices. The model intends to determine the opti-
mal pricing scheme to be established by the retailer (upper level deci-
sion maker) and the optimal load schedule adopted by the consumer
(lower level decision maker) under this price setting. The lower level opti-
mization problem is formulated as a mixed-integer linear programming
(MILP) problem. A hybrid approach consisting of a genetic algorithm
and an exact MILP solver is proposed. The individuals of the population
represent the retailer’s choices (electricity prices). For each price setting,
the exact optimal solution to the consumer’s problem is obtained in a
very efficient way using the MILP solver. An illustrative case is analyzed
and discussed.

Keywords: Genetic algorithm - Bilevel problem - Mixed-integer linear
programming - Demand response - Electricity retail market

1 Introduction

The retail electricity market has been mostly working as a one-way communi-
cation scheme. The retailer buys the energy in the wholesale market at vari-
able prices, which depend on the purchase time and the demand profile. As
the consumers are, in general, charged at a flat rate, they are indifferent to
price oscillations and lack the stimulus to engage in distinct consumption pat-
terns according to their flexibility of use of appliances. If consumers could see
prices changing along the day, i.e. they were offered dynamic tariffs within some
contracted bounds, they would expectedly adopt actions, namely by means of
automated energy management systems, to schedule their loads to minimize the
electricity bill without jeopardizing the quality of the energy services provided
by the appliances, namely comfort requirements. Profiting from the flexibility
consumers have in scheduling load operation would be of utmost importance to
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several players in the electricity industry chain. Consumers could see their elec-
tricity bill decreasing and retailers could make more judicious decisions regarding
buying and selling electricity. Also network companies, both at distribution and
transmission levels, would benefit because they could use demand-side resources
to mitigate congestion and make a better management of the availability of
distributed generation based on renewable sources.

In this setting, the retailer could reflect the acquisition conditions onto the con-
sumers, e.g. by determining variable electricity prices, which is not feasible in the
traditional one-side electricity market. Retailers and consumers have conflicting
goals. Retailers want to maximize profits by selling electricity subject to the regu-
lation framework, and consumers want to minimize costs subject to requirements
of quality of the energy services associated with the operation of loads in appro-
priate time slots. In addition to conflicting goals, there is a hierarchical relation
between retailers and consumers as the former determine prices and the latter react
by scheduling their loads accordingly. This is a bilevel optimization problem.

Communication capabilities associated with the evolution of the electricity
system to smart grids lay the foundations for bi-directional interaction between
retailers and consumers. This enables that time-varying price information is sent
by the retailer, which in turn receives the response of the consumer by adjusting
the operation schedule of the loads with the aim to minimize the electricity bill.

Several models have been proposed in literature concerning demand side man-
agement (DSM) in the residential setting [1]. DSM has many beneficial effects,
enabling a better usage of available generation capacity and network infrastruc-
tures, contributing to avoid or postpone new investments, decreasing peak load
demand, reducing the carbon emission levels and improving the overall grid sus-
tainability. DSM programs have re-emerged in the smart grid context allowing
end-users reshaping their energy consumption pattern and taking advantage of
dynamic tariffs.

Several approaches have been proposed using time-varying pricing strategies
to decrease peak load. In the day-ahead hourly pricing strategy, the consumers
receive the next 24 h prices a day or some hours before. Consumers should then
react accordingly by scheduling their appliances to get a satisfactory trade-off
between minimizing the electricity bill and maximizing or imposing constraints
on their welfare regarding comfort requirements.

In this paper a bilevel programming model is proposed for modeling the
interaction between the electricity retailer and consumers. Bilevel models for
this purpose have been studied in the literature. Zugno et al. [2] considered a
theoretical game to establish a Stackelberg relationship between retailers and
consumers in a dynamic pricing framework, with a stochastic component. In Bu
et al. [3] consumers aim at maximizing utility, which derives from the amount
of energy consumed, the price and an individual factor associated with each
consumer. The retailer aims at maximizing the profit considering that it can
buy energy from two suppliers with distinct prices and degree of certainty. Yang
et al. [4] incorporated DSM through an interaction game between retailers and
consumers according to their utility functions. The consumer’s objective function
derives from energy cost and the utility of energy consumption, which depends
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on the difference between the actual consumption and a target. Zhang et al. [5]
presented a bilevel model with multiple objective functions in the upper level,
which aim at maximizing the profit of supply companies, and a single objective
in the lower level, which aims at minimizing the consumer’s electricity bill. The
consumer can choose the supply company.

Hybrid approaches have been proposed by Meng and Zeng [6,7] to solve
bilevel problems with one leader (retailer), who wants to maximize profit, and
multiple consumers, who want to minimize their bills. Meng and Zeng [6] con-
siders interruptible, non-interruptible and curtailable appliances, which lead to
three lower level separate sub-optimization problems. In addition to consumers
using demand optimization, [7] also considers costumers whose energy consump-
tion patterns are not known to the retailer. Therefore, these patterns should
be learned by the retailer with the purpose of retail price determination. Both
approaches [6,7] use genetic algorithms to solve the profit maximization prob-
lem at the retailer’s side and an LP solver to derive optimal solutions at the
consumers’ side.

The bilevel model proposed in this paper intends to determine the optimal
pricing scheme to be established by the retailer and the optimal load sched-
ule adopted by the consumer under this price setting. Consumers are able to
deviate consumption of shiftable loads, i.e. cyclic loads as dishwashers, laundry
etc., to lower price periods subject to time slot constraints for load operation,
which can decrease the retailer’s profits. The structure of the paper is as fol-
lows. In Sect. 2 the main concepts of bilevel models are outlined. In Sect. 3 new
bilevel formulations for modeling the interaction between the retailer and con-
sumer optimization problems are presented. In Sect. 4 an algorithmic approach
combining a genetic algorithm (GA) with a mixed-integer linear programming
(MILP) exact solver is described. Numerical results and the ensuing discussion
are presented in Sect. 5. In Sect. 6 the main conclusions are drawn.

2 Bilevel Programming

In bilevel optimization problems the upper level decision maker (leader) con-
trols decision variables x, while the lower level decision maker (follower) controls
decision variables y. The two decision makers have their own objective functions,
which are subject to interdependent constraints. The decision process is sequen-
tial as the leader makes his decisions first by setting the values of x. Then, the
follower reacts by choosing the y values that optimize his objective function
on the feasible solutions restricted by the fixed x. The goal of the leader is to
optimize his objective function, but he must incorporate into the optimization
process the reaction of the follower because it affects the leader’s objective value.
The general bilevel programming problem can be stated as follows (BP):
min F(z,y)
s.t. G(z,y) <0

y € argmin{f(z,y) : g(z,y) < 0}
yey
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where X C IR™ (ny being the number of upper level variables) and Y C IR™? (nq
being the number of lower level variables) are closed sets. F'(x,y) and f(z,y) are
the leader’s and the follower’s objective functions, respectively. Since the follower
optimizes f(x,y) after x has been selected, x is a constant vector whenever
f(z,y) is optimized. For fixed z € X, the set Y(z) = {y €Y : g(z,y) < 0} is

the feasible set of the follower. The set ¥(z) =y € Y : y € argmin f(z,y’) p is
y' €Y ()

called the follower’s rational reaction set to a given x. The feasible set of (BP),

also called the induced region, is IR = {(z,y) : x € X,G(z,y) <0,y € ¥(z)}. It

is difficult to find global optimal solutions to bilevel optimization problems due

to their inherent non-convexity. Even the linear bilevel problem is NP-hard [8].

3 Bilevel Formulations for the Interaction Between
the Retailer’s and Consumer’s Optimization Problems

We consider a bilevel problem to model the interaction between the retailer and
consumers. The retailer buys energy in the wholesale market and sells it to con-
sumers. The retailer wants to maximize profit while consumers aim at minimizing
the cost of their energy consumption. In this model a partially flexible consumer
is considered, who can decide on the allocation of some shiftable loads based on a
price schedule communicated by the retailer. Shiftable loads are typically cyclic
loads, such as dishwashers or laundry machines, whose operation cycle can be
shifted in time but not interrupted. The model considers a cluster (aggregation)
of consumers with similar consumption and demand response profiles, thereafter
referred to as the consumer.

The problem has a bilevel structure, where the retailer (leader) determines
the prices z; to be charged to the consumer (follower) in each predefined sub-
period P; (i = 1,---,I) of the planning period T. Thus, the number of upper
level variables is I, i.e., the number of sub-periods P;. As proposed by Zugno
et al. [2], in order to enforce market competitiveness of retailer prices, we intro-
duce constraints on z; imposing minimum (z;) and maximum (Z;) values in each
sub-period P; and an average price (z*V%) value during T.

Knowing the electricity prices, the consumer determines the time (z;) each
flexible load j € {1,...,J} must start to minimize the cost of electricity and
ensuring that the operation cycle of load j is within a specified comfort time slot
T, =[T1;,T2;] C T.

Data:

T = number of intervals (minutes, quarter-hour, half-hour or other period of
time) of the planning period (¢ =1,---,T). Let T={1,--- ,T}.

J = number of shiftable loads to be managed by the consumer (j = 1,---,J).
I = number of sub-periods of time P; C T in which different prices of electric-
ity (time-of-use tariffs) are charged by the retailer to the consumer (i = 1,--- ,I).

P1;, P2;: points in time that delimit each sub-period P;, i = 1,--- I, such
that P; = [P1;, P2;] and Ufil P, =T. Let P; denote the amplitude of P;, i.e.
P, =P2, — P1; +1.
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z; = minimum price charged to the consumer in sub-period F;.

Z; = maximum price charged to the consumer in sub-period P;.

x4V E = average price charged to the consumer in T.

m = energy price seen by the retailer in the spot market at time t € T
(€/KWh x(m/60) where m is the number of minutes in one unit of time ¢).

C; = contracted power by the consumer at time ¢ of the planning period

b; = non-controllable base load at time ¢ of the planning period (KW), i.e.
amount of load that cannot be scheduled by the consumer’s energy management
system.

d; = duration of the operation cycle of shiftable load j.

fj(r) = power requested by load j at time r of its operation cycle (r =
1,---,d;) (KW).

Tj = [T1;,T2;] C T: time slot in which load j is allowed to operate.

Upper level decision variables:

x; = price charged by the retailer to the consumer during sub-period P;
(€/KWh x(m/60) where m has the same meaning as above), i = 1,--- ,I.

Lower level decision variables:

z; = starting time of the operation cycle of load j, j =1,---,J.

Auziliary lower level variables:

uj; = binary variable representing whether the operation cycle of load j is
“on” or “off” at time ¢ of the planning period, j=1,--- ,J, t=1,--- ,T.

pj+ = power requested to the grid by load j at time ¢ of the planning period
(KW),j=1,---  J, t=1,--- | T.

Bilevel Model 1.

I J . i
maz F =Y "> b+ Y pje) = > mlbi+ > pji) W
i=1tepP; j=1 P =
s.1.
ST A= @)
T2z, i=1 1 (3)
1 d
T Z Pixz = JZAVG (4)
i=1
! J
min f = Z x; (b + ijt) 5
i=1tep; J=1
s.t.
 flifz <t <zi+d; o
uﬁ{o otherwise , =1, J;t=1,---.,T (6)

pjt=filt =z +Dug,  j=1,- Jit=1,---,T (7)
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J
> pje+b <Gy, t=1,---,T (8)
j=1
T].]SZJST?j*d]ﬁ*]. jil,,J (9)

The objective function at the upper level (1) is the maximization of the
retailer’s profit (revenue from selling energy to consumer minus cost of purchas-
ing the energy in the spot market). Constraints (2) to (4) define the limits for the
energy prices charged to the consumer in each sub-period P; and set an average
price in T.

The formulation of the lower level problem in Model 1 is based on the DSM
model proposed in [1]. The objective function (5) consists in the minimization
of the consumer’s total cost; (6) sets the value of the auxiliary binary variables
uj; as function of the variables z; and time ¢; variables uj; are, in turn, used in
equations (7), which set the value of the power requested to the grid by each load
J at each time t according to the load operation cycle; constraints (8) impose
that the contracted power is not exceeded at any time and constraints (9) impose
time limits for the operation of each load according to the time slots defined by
the consumer.

Model 1 can be written in an equivalent manner by reformulating the lower
level problem as a MILP problem. Thus, bilevel Model 2 is presented below,
which is a mathematical programming model equivalent to bilevel Model 1. It
does not consider variables z;, j = 1,---,J (which specify the starting time ¢
of the operation cycle of load j), but rather binary variables w;,; that indicate
whether the load j is “on” or “off” at time ¢ of the planning period and it is
at time r of its operation cycle. Explicit variables u;; are no longer necessary
because they can be expressed in terms of wjy: uje = Zle wjr¢. The upper
level variables (x;) are the same as in Model 1.

Data:

The data are the same as in Model 1 with a single difference: the functions
f;(r) are replaced by series of discrete values, consisting of one f;, value for each
combination j,r. Thus:

fjr = power requested by load j at time r of its operation cycle (r =1, --- ,d;)

To avoid ambiguity between points in time of the operation cycle and points
in time of the planning period, we refer to the “time r” of the operation cycle
as “stage r”.

Lower level decision variables:

wjr¢ = binary variable representing whether load j is “on” or “off” at time ¢
of the planning period and at stage r of its operation cycle.

In order not to unnecessarily increase the number of wj,; variables, they
are defined only for ¢ in the time slot allowed for the operation for each load.
Therefore, wj,+ are defined for j =1,--- ,J,r=1,---,d;, t =T1;,--- ,T2;.

Auziliary lower level variables:

pjt = power requested to the grid by load j at time ¢ of the planning period
KW),j=1,---  J, t=1,--- | T.

)
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Bilevel Model 2.

I J T J
max F =YY aibe+ Y _pir) = Y_mlbe+ Y pjr) (10)
i=1teP; j=1 t=1 j=1
s.t.
2 <Ty,i=1,---,1 (11)
>y i=1, 1 (12)
li px; = z4VC (13)
T i=1 o
I J
min f =" wi(bi+ Y pji) (14)
i=1tcP; Jj=1
s.t.
d;
pit =Y firwire,  j=1,- Jit=Tl;--- T2 (15)
r=1
pjt =0, j=1, it <T1l;Vt>T2; (16)
J
ijt+bt§0ta t=1,---,T (17)
j=1
d;
Swim <1, =1 Jit =Tl T2 (18)
r=1
Witr1)(t41) = Wirt, J =1, Jyr=1,-,dj =Lt =T1;,---,T2; -1
(19)
T2,
Soowi=1, =Ll Jir=1,--d (20)
t=T1;
T2;—d;+1
> w1, =17 (21)
t=T1;
wir € {0,1}, j=1,--- ,Jyr=1,--- d;;t=T1,,--- , T2
pjt >0 j=1,--,Jit=1,---,T (22)

The upper-level problem (10)—(13) and the lower-level objective function (14)
are the same as in Model 1.

Constraints (15)—(16) correspond to (7) in Model 1 and aim at setting the
auxiliary variables p;;. Since these variables are defined for every ¢t = 1,---,T,
these constraints comprise two groups: (15) which define p;; for ¢ within the time
slot allowed for load j to operate (for which wj,; variables have been defined)
and (16) for t outside this time slot in which pj; is always zero.

Constraints (17) are the same as (8) in Model 1.
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Constraints (18) ensure that, at time ¢ of the planning period, each load j is
either “off” or is “on” at only one stage r of its operation cycle.

Constraints (19) ensure that, for each load j, if it is “on” at time ¢ and at
stage r < d; — 1 of its operation cycle, then it must be also “on” at time ¢ + 1
and at stage r + 1.

Constraints (20) ensure each load j is operating at stage r exactly once.
Note that constraints (19) do not prevent that a load j starts at a time after
T2; —d; + 1 and, as it cannot finishes until 72;, it continues from 7'1;. For
instance, consider that a load j is at stage r = 1 at t = T2; — 1, r = 2 at
t = T2; and then skips to r = 3 at t = 1, r = 4 at t = 2, etc.; this operation
scheme is not feasible in practice but it does not violate constraints (19). Thus,
constraints (21) are imposed, which ensure that each load j starts its operation
(stage r = 1) at most at time T2; — d; + 1 so that it can finish not later than
T2;, i.e. within its allowed comfort time slot. Constraints (19) together with (20)
and (21) ensure that load j is operating exactly d; consecutive time intervals,
forcing wj,; to be 0 when load j is “off”.

4 A Hybrid Genetic Algorithm with MILP Solver

A hybrid approach consisting of a GA and an exact MILP solver is proposed to
solve the bilevel programming problem formulated in Model 2 for the interaction
between the electricity retailer and the consumer.

The GA applies to the upper level problem (10)—(13). Each individual of the
population represents an electricity price setting ' = (x4, 25, -+ ,z%). For each
2’ the lower level problem (14)—(22) with x = 2’ is exactly solved. Let 3’ be the
optimal solution obtained for this lower level instance (note that the lower level
decision variables are w;, and pj;). Each solution (z',y’) to the bilevel problem
is then evaluated by the upper level objective function F' in (10). Hence, the
fitness function is F(z,y).

The lower level problem has been modeled using the AMPL language [9] and
the GA has been coded in Delphi for Windows. For each individual z’, the lower
level MILP problem is exactly solved by the CPLEX solver called from the GA.
The electricity prices (z;) are the only parameters that change from one call to
another one. The general description of the GA is presented below.

Genetic Algorithm:

1: Create the initial population Pop of N individuals o' = (2,25, - ,2%})
satisfying constraints (11)—(13), as described in Sect. 4.1.

2: For each individual z’ in Pop, solve the lower level problem (14)—(22) with
z = x’ using the MILP solver. Let 3’ be the optimal solution obtained.

3: Evaluate the fitness of each solution (2',y’) to the bilevel problem by calcu-
lating F(2’,y') according to (10).

4: while the stopping condition is not met do

repeat

Select two parents ' and x”” from Pop and apply crossover to generate
a child z°.
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Apply mutation to ¢ with probability P,,.
Repair z° to satisfy constraints (11)—(13) or discard it if it is not
repairable.
until N children have been generated, which form the set Offspring (see
Sect. 4.2).
For each z¢ in Offspring solve the lower level problem (14)—(22) with
x = x¢ using the MILP solver. Let y¢ be the optimal solution obtained.
Evaluate the fitness of each solution (z¢, y¢) by calculating F(z¢,y¢)
according to (10).
Create NextPop by copying the best solution obtained thus far (which is
either in Pop or in Offspring) and performing N — 1 binary tournaments
without replacement between individuals of Offspring and Pop. Update
the current population Pop with NextPop.
end while
return (z/,y’) of Pop with the highest fitness.

4.1 Initial Population

The initial population consists of N individuals 2’ = (x}, 2%, - ,2}) in which
each z} is randomly generated in the range [z;,Z;]. In order to ensure that z’
also satisfies the average price constraint (13), the following repair procedure is
applied.

R o e o

—_ =
s R A R

Repair z':

. Compute s = Y., P,

Let A be the set of indices ¢ of 2, that are allowed to be changed. Initially,
A={1,2,--- I}.

. if s # T2V then

Let A = TacAVG:— 5
Let P = EiEA Pi
for each zj,i € A do

xf — zi+ A/P
end for

: end if
: fori=1to I do

if 2; < z} then

xf — ziand A — A\ {i}
else if 27 > 7/ then

xf — T, and A — A\ {i}
end if

: end for -
: Compute s = Zle Pz}
. if s=Tz4VC then

Stop and return z’

: elseif A =@ then

Stop and discard z’
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21: else
22: go to 2:
23: end if

The process of randomly generating x’ and repairing it using the above pro-
cedure is repeated until N individuals are generated. In our experiments the
repair procedure converged in few iterations.

4.2 Reproduction Process

The reproduction process creates N offspring, each one generated from a different
selection of two parents in the current population Pop. A binary tournament is
applied in which two individuals from Pop are chosen at random and the best
one is selected to be one parent. In the crossover process there is a 50 % of
chance of this individual being the first or the second parent. The other parent
is randomly selected from Pop. A one-point crossover operator is then applied to
produce an offspring from the two selected parents. Hence, if the first parent is

x' = (z}, 25, -+ ,27) and the second one is x” = (z, 24, -, zY), the offspring is

x¢ = (o), -, 2} 2] 1, -+ ,o]) where iy is the crossover point drawn at random
between 2 and I — 1.

Mutation is then applied to ¢ with a probability P,, of changing each gene
of z¢. For a given zf, the mutation consists of adding or subtracting a positive
perturbation randomly generated in the range between 0 and 0.2(Z; — z;). If ¢
is out of the bounds imposed by constraints (11) and (12), then it is pushed to
the closest bound and its index is excluded from the set A of variables that are
allowed to be changed in the repair procedure. ¢ is then repaired (using the
procedure described in Sect. 4.1) to satisfy constraint (13) or is discarded if it is
not repairable. This process is repeated until N offspring have been generated.
They form the Offspring population, which will compete with Pop to determine
the population for the next generation.

The individual with the best fitness obtained thus far always survives from
one generation to the next (i.e. an elite set with one element is considered).
This is the first individual inserted into the next population. The other N — 1
individuals are selected by binary tournament selection between an individual
from the Offspring population and an individual from the current population Pop
(the parents), both chosen at random. The individual with the highest fitness
wins and is selected to integrate the next population. Any individual included in
the new population is removed from its original population (Offspring or Pop),
so the same individual cannot be selected twice.

5 Numerical Results and Discussion

An illustrative case is discussed in this section. Most data were obtained from
actual audit information and some values were estimated. A 24 h planning period
divided into intervals of 15 min is considered. Thus, 1 unit of time () is a quarter-
hour, which leads to a planning period of T' = 96 units of time, T={1,--- ,96}.
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Since original data have been collected for 1 min periods, those values were aggre-
gated (by considering average values) for the quarter-hour intervals.

Five shiftable loads were considered (J = 5): dishwasher, laundry machine,
electric water heater (EWH), electric vehicle and clothes dryer. Figure 1 shows
the operation cycles of these loads, i.e. fj. values. The time slots [T'1;,72;]
allowed for the different loads j are displayed in Fig. 2.

Seven sub-periods of time P; C T,7=1,---,7, were considered for defining
the electricity prices to be charged by the retailer to the consumer. The maximum
and minimum prices (Z; and z; ) in each sub-period are displayed in Fig. 3. The
last time point P2; that delimits each sub-period P; , ¢« = 1,---,1, is also
presented in Fig.3 below the curve of the minimum price. The first time point
P1; is always given by P2;_; 4+ 1, being 1 for ¢ = 1.

The energy prices the retailer has to pay () for the electricity bought in the
spot market are displayed in Fig. 4. All prices in Figs. 3 and 4 are in €/KWh, so
they were then converted to periods of quarter-hours (i.e. divided by 4) to feed
the model. The average price 24V = 0.116 €/KWh was considered.

Dishwasher EWH (electric water heater)

2000 1724 1676 2000
~ 1500 1272 1500 -
2
3 1000 22 1000
H
s s 104 500
0 0
1 2 3 4 5 1 2 3 4 5
Time (quarter-hour) Time (quarter-hour)
Laundry machine Clothes dryer
00 2040
2000 2000 1808 1740
2
2 10 T 1500
% 1000 1000
< 500 = 180 228 215 500 282
0 o
1 2 3 4 5 6 1 2 3
Time (quarter-hour) Time (quarter-hour)
2000 Electric vehicle
= 1500
3 1500
§ 1000
& 500
0

1234567 8 91011121314 1516171819 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Time (quarter-hour)

Fig. 1. Operation cycles of the loads to be managed.

Clothesdryer[76, 96
Electricvehicle [1.48]

Laundry machine [32, 60]
Dishwasher[1, 36]

13 5 7 9 111315171921 232527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

Fig. 2. Comfort time slots allowed for the operation of each load.
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Limits to prices charged to end-consumer
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time (quarter-hour)

Fig. 3. Minimum and maximum electricity prices charged to the consumer.

Spot market

Price (€/KWh)
o o
& 8

©
®

[=4
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Time (quarter-hour)

Fig. 4. Prices at spot market.

The diagram of non-controllable base load (bt,t = 1,---,T) is presented in
Fig. 5. The contracted power C; is 4.6 KW for t = 28, --- 84 and 3KW for the
other ¢t €T.

In the computational simulations a population size of 30 individuals was
considered and 100 iterations of the GA were performed in each run.

We started by tuning the parameters and two values for the probability of
mutation were tested: P,, = 0.05 and P,, = 0.01. Five runs for each P,, were
performed and systematically the run with P,, = 0.05 yielded a final solution
better than with P,, = 0.01. Each run with P,, = 0.01 considered equal seed for
the generation of random numbers as the corresponding run with P,, = 0.05.
Figure 6 illustrates the evolution of the best and average values of F' among
the population members of each generation in one run with P, = 0.05 and
the corresponding run with P, = 0.01. In general, the algorithm with P,, =
0.01 converges quickly for solutions with higher fitness F' but afterwards it has
difficulty in improving them significantly. Thus, we have adopted P,,, = 0.05.
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Fig. 5. Power requested to the grid by the base load.

Analyzing the solutions computed over the generations, we could observe
that the schedule plans of the shiftable loads (optimal solutions to the lower
level problem for each setting of the upper level variables) are few and there are
not many differences among them. However, there are very significant differences
in the retailer’s profit (F') and the follower’s cost (f) among the solutions due to
the variation of the electricity prices (values of the upper level variables). Remind
that the bilevel problem is the retailer’s problem, so the optimal solution is the
one that offers the retailer the highest profit knowing that the consumer will
schedule loads at his best convenience considering the retailer’s price setting.

For each upper level variable configuration given by the GA, the lower level
is exactly solved. In the present case, this is a MILP problem with 2230 binary
variables (wj,¢), 151 continuous variables (pj;, excepting those that are neces-
sarily 0 due to constraints (16)), 2233 inequality constraints and 206 equality
constraints. Despite being a large problem it is solved very fast by CPLEX as the
optimal solution was always found at the root of the branch-and-bound tree and
only a few simplex iterations (less than 20) were needed to solve each instance.
So, the exact resolution of the lower level problem has revealed to be a very
interesting option for this model. The simulations were done in a computer with
an Intel Core i7-2600K CPU@3.4 GHz and 8 GB RAM. On average, the time
spent in performing one complete generation with a population of 30 individuals
(i.e. steps 5: to 12: of the Genetic Algorithm, including solving 30 lower level
problems) was 7s.

Twenty independent runs with 100 iterations each (considering P,, = 0.05)
were performed and the best solution in each run was recorded (solution with
highest fitness, F®*?). Let us call this set of solutions the 20-best set. The
maximum, minimum, mean and standard deviation of F' in the 20-best set are
reported in Table 1. Among these best solutions there are only two distinct sched-
ule plans for the shiftable loads. Plan 1 considers the following starting times
for the loads: dishwasher - ¢ = 1; laundry machine - ¢ = 41; EWH - t = 36;
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Table 1. Statistics of F*°** (€) in 20 independent runs.

maximum F°*! | minimum F?°** | mean F"**! | standard deviation of F?¢%

1825.66 1770.68 1807.43 14.38

electric vehicle - t = 5; clothes dryer - t = 85. Plan 2 only differs from Plan 1in
the time operation of the laundry machine. The starting times in Plan 2 are the
following: dishwasher - ¢ = 1; laundry machine - ¢t = 48; EWH - ¢t = 36; electric
vehicle - ¢ = 5; clothes dryer - ¢t = 85.

The solution with maximum F°¢st in the 20-best set presents a retailer’s profit
(F) of 1825.66 and the consumer’s cost (f) is 3368.24; the electricity prices in
each of the 7 sub-periods of time are: x1 = 0.1, zo = 0.23998, z3 = 0.119964,
x4 = 0.106572, x5 = 0.0301812, x5 = 0.235864, z7 = 0.095124€/KWh. The
schedule plan is Plan 2 whose load diagram is depicted in Fig. 7. The minimum
Fest is 1770.68 and the consumer’s cost in this solution is 3308.91. It corresponds
to schedule Plan 1. All monetary values (F and f) are in € and refer to a period
of 24h and a cluster of 1000 consumers with similar consumption and demand
response profiles.

We made further experiments with a higher number of iterations (1000).
These experiments led to small improvements (0.37 % better than the best solu-
tion described above) in the upper level solution and similar plans for the lower
level solutions but with a significantly heavier computation burden.
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Fig. 7. Load diagram corresponding to the best solution.

6 Conclusions

In this paper new bilevel formulations for modeling the interaction between
the retailer and consumers in the electricity market were presented. A bilevel
problem is a programming problem where a (lower level) optimization problem
is embedded as a constraint in another (upper level) optimization problem. In
the present model, the electricity retailer is the upper level decision maker, which
buys energy in the spot market and sells it to consumers. The retailer determines
prices to be charged to the consumer, subject to the regulation framework, with
the aim of maximizing its profit. The consumer (lower level decision maker)
reacts to the prices by scheduling loads to minimize his electricity bill.

Bilevel programming problems are very difficult to solve due to their inherent
non-convexity. In this paper we proposed a genetic algorithm combined with an
exact MILP solver to tackle the problem.

An illustrative case was studied considering real data for the loads, which
were obtained through audits. The exact resolution of the lower level problem for
each upper level setting (electricity prices) has revealed to be a very interesting
option, thus leading to a very efficient hybrid approach combining a GA with
a MILP solver. Although the lower level problem is a high dimensional MILP
problem, it is solved very fast.

As future work we intend to include other type of loads, in particular thermo-
static controlled loads. We also plan to expand the model to consider multiple
objective functions at the lower level to analyze consumer’s cost vs. comfort
trade-offs. For this purpose, time slot constraints for the load operation can be
replaced by preferred time slots and the deviation from those slots (as measure
of discomfort) is minimized.
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