

The Earth's magnetic environment dancing in the rhythm of solar storms

Eija I. Tanskanen ReSoLVE Centre of Excellence Aalto University

The variability of the ground field...

... is due to the changes in the Sun, solar wind and solid Earth.

Solar B-field complexity Earth The solar storms Ionospheric conductivity Core convection Surface morphology Litosphere structure Solar wind helicity Crust 0-100 km Mantle Outer Cor

The Sun-Earth geometry

Dipole tilt

Daily variability

- The variation of ground magnetic field is due to the external and internal (induction) sources
- Our goal is to find the time intervals and locations when the role of induction is the largest

Northern hemisphere

Southern hemisphere

Geomagnetically "quiet" times

ACADEMY

ACADEMY OFFINLAND RESOLVE

Hemispheric comparison

\rightarrow Similar year-to-year variability in the northern and southern hemispheres

Magnetic fluctuations disturb infrastructure

A transformer destroyed by 1989 magnetic storms.

 \rightarrow The role of induction increases away from the auroral oval due to the Sun-Earth geometry

 \rightarrow The role of induction increases close to the sea due to the crustal structure differences

ACADEMY OF FINLAND

Globally averaged effects

The typical internal field contribution is 40% during the rapid field variations (0.2 nT/s and 120 nT/10 min) e.g. during Pc5 pulsations or substorm onsets.

The inductive is on average about 40% of the IL during substorm onset, while during other substorm phases it is about 20% and at the geomagnetically quiet times around 10-15%.

Geomagnetic storms

Geomagnetic storms occur typically once per week.

High-speed streams drive high-latitudes

... and ICMEs low latitudes.

Seasonal variation paradigm change

Old paradigm: Geomagnetic activity maximizes in spring and fall.

New paradigm:

Geomagnetic activity can maximize at any solar cycle phase depending on the state of the solar wind and the Sun.

"While mechanisms leading to the classical twoequinox maxima pattern are in operation, the longterm change of solar wind speed tends to mask the effect of these mechanisms for individual years." *Tanskanen et al., JGR, 2017b, Peitso et al., Space Weather 2018.*

Multiyear averages

Magnetic field helicity carry information on the state of the Sun

Sun-Earth magnetic coupling methods

Complex active regions (CARs) produce complex interplanetary magnetic field. Hale classification used: α , β , $\beta\gamma$, $\beta\gamma\delta$...

Fast solar wind originating from the polar coronal holes carry solar wind fluctuations from the Sun towards the Earth.

Tanskanen et al., JGR, 2017a

Future directions

