
PHYS-E0421 Solid-State Physics (5 cr)
Exercise set 7

Dielectric properties and magnetism 
Spring 2019

Model solutions

1. Complex dielectric constant

Note: ε0 - vacuum permittivity, ε0 = ε(0) = ε(ω = 0).

Equation of motion:

ü + γu̇ = −k
µ
u +

q

µ
Eloc, (1)

where k
µ = ω2

0.

By inserting the ansatz u = u0e
−iωt (and implicitly Eloc = E0e

−iωt) we get

−ω2u− iωγu = −ω2
0u−

q

µ
Eloc (2)

⇒ u =
q

µ

1

ω2
0 − ω2 − iωγ

Eloc. (3)

The polarization can be expressed microscopically as P = nqu + nαEloc and macroscop-
ically as P = (ε − 1)ε0Emac. Because we are ultimately interested in understanding the
behaviour of a single oscillator, we assume a sparse (and isotropic and spherical) sample
so that Eloc = Emac = Eext = E. Then, we get by setting ”P = P“

nqu + nαE = (ε− 1)ε0E (4)

nq2

µ

1

ω2
0 − ω2 − iωγ

E + nαE = (ε− 1)ε0E (5)

ε = 1 +
nq2

µε0

1

ω2
0 − ω2 − iωγ

+
nα

ε0
(6)

Next, let’s rewrite this in terms of ε0 and ε∞. By taking limits ω → 0 and ω →∞ we get

ε0 = 1 +
nq2

µε0

1

ω2
0

+
nα

ε0
(7)

and
ε∞ = 1 +

nα

ε0
, (8)

respectively. Note that ε0 − ε∞ = nq2

µε0
1
ω2
0

Thus, we get

ε(ω) = ε∞ +
ω2
0(ε0 − ε∞)

ω2
0 − ω2 − iγω

. (9)

Now, let’s separate the real and imaginary parts

ε(ω) = ε∞ +
ω2
0(ε0 − ε∞)

ω2
0 − ω2 − iωγ

· ω
2
0 − ω2 + iωγ

ω2
0 − ω2 + iωγ

(10)

= ε∞ +
(ε0 − ε∞)ω2

0(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2γ2

+ i
(ε0 − ε∞)ω2

0γω

(ω2
0 − ω2)2 + ω2γ2

(11)

≡ ε1(ω) + iε2(ω). (12)

We note that ε(ω) has divergence when γ → 0. Thus, when calculating the peak of ε2 and
the zeros of ε1, one needs to first evaluate the condition for peak/zero and only after that
take the limit γ → 0. This leads to long but straightforward algebra, which we can avoid
by remembering to treat the divergence specially. Figure tells more than thousand words,
so see below the plot of ε(ω) with ε0 = 2, ε∞ = 1, and different damping factors γ (peak
gets thinner and the divergence develops as γ → 0).
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Peak of ε2, small damping limit:

When γ → 0,

ε2 →
(ε0 − ε∞)ω2

0γω

(ω2
0 − ω2)2

. (13)

The peak corresponds to the divergence at ω = ω0 ≡ ωT .

Zeros of ε1, small damping limit:

When γ → 0,

ε1 → ε∞ +
(ε0 − ε∞)ω2

0

ω2
0 − ω2

. (14)

This equals to zero when ω2 = ε0
ε∞
ω2
0 ≡ ω2

L. Additionally, ε1 diverges at ω0 and changes
sign. Thus, there is a zero at ω ≈ ω0 when γ is non-zero though small (see the figure
above).
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2. Plasma frequency in atomic units

In atomic units, the numeric values of the following physical quantities are set to unity:

me = e = h̄ =
1

4πε0
= 1. (15)

The units are can be marked, e.g. in the case of mass, as me, a.u., or nothing, with the
latter two somewhat ambiguous. It can be inferred, that length is in the units of Bohr
radius (a0 ≈ 0.529 Å) and energy in Hartree (Ha ≈ 27.211 eV).

The Wigner-Seitz radius rs is defined by equating the mean volume per particle (here,
electron) in a system to a volume of sphere:

4

3
πr3s =

V

N
=

1

n
. (16)

The plasma frequency is

ωp =

√
ne2

meε0
=

√
3e2

4πr3smeε0
(17)

in SI units [rad/s], or, in atomic units

ωp =

√
3

r3s
(18)

In silver rs = 3.02 (a0), and thus ωp = 0.33 (Ha/h̄) or in the units of energy h̄ωp = 0.33
Ha = 8.98 eV.
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3. Magnetization

(a) Let the field be aligned in the z direction, i.e., B = (0, 0, Bz). For the given J = 1/2,
we have Jz = ±1

2 , i.e., the ion has two possible states. The magnetic moment of
the ion is mz = −gµBJz = ∓µB and the corresponding energy is E = −m · B =
−mzBz = ±µBBz.
The probability of a state at a given temperature T is given by the Boltzmann factor
P (E) = e−E/kBT . Thus, the thermal average is

〈mz〉 =
−µBe−µBBz/kBT + µBe

µBBz/kBT

e−µBBz/kBT + eµBBz/kBT
(19)

where the denominator normalizes the probabilities. The exponential factors can be
rewritten as

〈mz〉 = µB tanh

(
µBBz
kBT

)
(20)

to yield the magnetization

M = n〈mz〉 = nµB tanh

(
µBBz
kBT

)
, (21)

where n is the density of ions.

(b) The internal energy per unit volume is u = −M ·B = −MBz = −nµB tanh(µBBz/kBT )Bz.
The heat capacity per unit volume in a constant magnetic field B is

cB =

(
∂u

∂T

)
B

= nkB

(
µBBz
kBT

)2 1

cosh2
(
µBBz

kBT

) . (22)

See below a plot of cB and the limiting forms.
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By writing coshx in terms of exponential functions and using series expansions for
them, one gets limiting forms

cosh2 x =


(

1 + x2

2!
+ x4

4!
+ . . .

)2
≈ 1, x� 1

1
4(ex + e−x)2 ≈ 1

4e
2x, x� 1

. (23)

Thus

cB ≈

nkB
(
µBBz

kBT

)2
, T � µBBz/kB (high T)

4nkB

(
µBBz

kBT

)2
e−2µBBz/kBT , T � µBBz/kB (low T)

. (24)
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Let’s calculate the temperature at the peak of cB(T ). The derivative at zero gives
(x ≡ µBBz/kBT )

d

dx

(
x2

cosh2 x

)
=

2x coshx− 2x2 sinhx

cosh3 x
= 0 (25)

from which

x = 0 or x sinhx = coshx ⇒ x ≈ 1.2 (numerically). (26)

Thus, cB has the maximum value at T ≈ µBBz/1.2kB, so more accurate conditions
for high and low temperature are given by T � µBBz/1.2kB and T � µBBz/1.2kB,
respectively. Thus, with Bz = 0.5 T, we get high temperature regime T � 0.28 K.
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