1. Landé g-factor

On the basis of Hund's rules, we know S, L, and J. For a given J, there is still $2 J+1$ degeneracy, which will be broken by the magnetic field

$$
\begin{equation*}
\Delta E_{n}=\mu_{B} \mathbf{H} \cdot\langle n| \mathbf{L}+g_{e} \mathbf{S}|n\rangle+\sum_{n^{\prime} \neq n} \frac{\left.\left|\langle n| \mu_{B} \mathbf{H} \cdot\left(\mathbf{L}+g_{e} \mathbf{S}\right)\right| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}-E_{n}^{\prime}} \tag{1}
\end{equation*}
$$

Magnitude and direction of \mathbf{J} is conserved, the magnitudes of \mathbf{L} and \mathbf{S} are conserved, but not their directions (see figure). We need to evaluate

$$
\begin{equation*}
\left\langle J L S J_{z}\right| \hat{L}+g_{e} \hat{S}\left|J L S J_{z}^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

where $g_{e} \approx 2$ is the electron gyromagnetic ratio. Wickner-Eckart theorem states that

$$
\begin{equation*}
\left\langle J L S J_{z}\right| \hat{L}+2 \hat{S}\left|J L S J_{z}^{\prime}\right\rangle=g(J L S)\left\langle J L S J_{z}\right| \hat{J}\left|J L S J_{z}^{\prime}\right\rangle \tag{3}
\end{equation*}
$$

where $g(J L S)$ is the Landé g-factor. To calculate it, we write it more generally as

$$
\begin{equation*}
\left\langle J L S J_{z}\right| \hat{L}+2 \hat{S}\left|J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right\rangle=g(J L S)\left\langle J L S J_{z}\right| \hat{J}\left|J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right\rangle \tag{4}
\end{equation*}
$$

where both matrix elements vanish unless $J=J^{\prime}, L=L^{\prime}$, and $S=S^{\prime}$. We multiply both sides by $\left\langle J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right| \hat{J}\left|J^{\prime \prime} L^{\prime \prime} S^{\prime \prime} J_{z}^{\prime \prime}\right\rangle$ and sum over all primed states

$$
\begin{align*}
& \sum_{J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}}\left\langle J L S J_{z}\right| \hat{L}+2 \hat{S}\left|J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right\rangle \cdot\left\langle J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right| \hat{J}\left|J^{\prime \prime} L^{\prime \prime} S^{\prime \prime} J_{z}^{\prime \prime}\right\rangle \tag{5}\\
= & g(J L S) \sum_{J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}}\left\langle J L S J_{z}\right| \hat{J}\left|J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right\rangle \cdot\left\langle J^{\prime} L^{\prime} S^{\prime} J_{z}^{\prime}\right| \hat{J}\left|J^{\prime \prime} L^{\prime \prime} S^{\prime \prime} J_{z}^{\prime \prime}\right\rangle \tag{6}
\end{align*}
$$

Since the sum is over complete set of states, we can use completeness relation $\sum_{\alpha}|\alpha\rangle\langle\alpha|=$ 1 and obtain

$$
\begin{equation*}
\left\langle J L S J_{z}\right|(\hat{L}+2 \hat{S}) \cdot \hat{J}\left|J L S J_{z}^{\prime}\right\rangle=g(J L S)\left\langle J L S J_{z}\right| \hat{J}^{2}\left|J L S J_{z}^{\prime}\right\rangle \tag{7}
\end{equation*}
$$

which we can evaluate since

$$
\begin{align*}
& \hat{S}^{2}=(\hat{J}-\hat{L})^{2}=\hat{J}^{2}+\hat{L}^{2}-2 \hat{L} \cdot \hat{J} \tag{8}\\
& \hat{L}^{2}=(\hat{J}-\hat{S})^{2}=\hat{J}^{2}+\hat{S}^{2}-2 \hat{S} \cdot \hat{J} \tag{9}
\end{align*}
$$

$$
\begin{align*}
\left\langle J L S J_{z}\right| \hat{J}^{2}\left|J L S J_{z}\right\rangle & =J(J+1) \tag{10}\\
\left\langle J L S J_{z}\right| \hat{L}^{2}\left|J L S J_{z}\right\rangle & =L(L+1) \tag{11}\\
\left\langle J L S J_{z}\right| \hat{S}^{2}\left|J L S J_{z}\right\rangle & =S(S+1) . \tag{12}
\end{align*}
$$

We get

$$
\begin{align*}
g(J L S) J(J+1) & =\left\langle J L S J_{z}\right| \hat{L} \cdot \hat{J}\left|J L S J_{z}\right\rangle-2\left\langle J L S J_{z}\right| \hat{S} \cdot \hat{J}\left|J L S J_{z}\right\rangle \tag{13}\\
& =\frac{1}{2}[J(J+1)+L(L+1)-S(S+1)]+[J(J+1)+S(S+1)-L(L+1)] \tag{14}
\end{align*}
$$

which finally yields

$$
\begin{equation*}
g(J L S)=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)} \tag{15}
\end{equation*}
$$

2. Total angular momentum

(a) Commutation relations for the orbital and spin angular momenta

$$
\begin{align*}
& \mathbf{L} \times \mathbf{L}=i \mathbf{L} \Leftrightarrow\left[L_{i}, L_{j}\right]=i \sum_{k} \varepsilon_{i j k} L_{k}, \tag{16}\\
& \mathbf{S} \times \mathbf{S}=i \mathbf{S} \Leftrightarrow\left[S_{i}, S_{j}\right]=i \sum_{k} \varepsilon_{i j k} S_{k}, \tag{17}\\
& \quad\left[L_{i}, S_{j}\right]=0 \tag{18}
\end{align*}
$$

Here, we have used the Levi-Civita symbol in writing cross producs. Levi-Civita symbol $\varepsilon_{i j k}$ is defined as

$$
\varepsilon_{i j k}=\left\{\begin{align*}
+1 & \text { if }(i, j, k) \text { is }(x, y, z),(y, z, x) \text { or }(z, x, y) \tag{19}\\
-1 & \text { if }(i, j, k) \text { is }(z, y, x),(x, z, y) \text { or }(y, x, z) \\
0 & \text { if } x=y \text { or } y=z \text { or } z=x
\end{align*}\right.
$$

With these, the i th component of cross product is $(\mathbf{a} \times \mathbf{b})_{i}=\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} a^{j} b^{k}$ or simply $(\mathbf{a} \times \mathbf{b})_{i}=\varepsilon_{i j k} a^{j} b^{k}$ in Einstein notation (implied summation).
Using the last commutation relation we can show

$$
\begin{align*}
{[\mathbf{L}, \mathbf{S}] } & =\left[L_{x} \hat{\mathbf{e}}_{x}+L_{y} \hat{\mathbf{e}}_{y}+L_{z} \hat{\mathbf{e}}_{z}, S_{x} \hat{\mathbf{e}}_{x}+S_{y} \hat{\mathbf{e}}_{y}+S_{z} \hat{\mathbf{e}}_{z}\right] \\
& =\left[L_{x}, S_{x}\right]+\left[L_{y}, S_{y}\right]+\left[L_{z}, S_{z}\right]=0 \tag{20}
\end{align*}
$$

Then $(\mathbf{J}=\mathbf{L}+\mathbf{S})$,

$$
\begin{equation*}
\left[\mathbf{L}+g_{0} \mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{J}\right]=[\mathbf{L}, \hat{\mathbf{n}} \cdot \mathbf{L}]+\underbrace{[\mathbf{L}, \hat{\mathbf{n}} \cdot \mathbf{S}]}_{=0}+g_{0}[\underbrace{[\mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{L}]}_{=0}+g_{0}[\mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{S}] \tag{21}
\end{equation*}
$$

Consider the i th component of the commutator (and $\hat{\mathbf{n}} \cdot \mathbf{J}=n_{j} J_{j}$ with implicit summation over j):

$$
\begin{aligned}
\left(\left[\mathbf{L}+g_{0} \mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{J}\right]\right)_{i} & =\left[L_{i}, n_{j} L_{j}\right]+g_{0}\left[S_{i}, n_{j} S_{j}\right]=n_{j}\left[L_{i}, L_{j}\right]+g_{0} n_{j}\left[S_{i}, S_{j}\right] \\
& =n_{j} i \sum_{k} \varepsilon_{i j k} L_{k}+g_{0} n_{j} i \sum_{k} \varepsilon_{i j k} S_{k}=i \sum_{k} \varepsilon_{i j k} n_{j}\left(L_{k}+g_{0} S_{k}\right)
\end{aligned}
$$

and finally writing explicitly the implicit sum over j :

$$
\begin{equation*}
i \sum_{j k} \varepsilon_{i j k} n_{j}\left(L_{k}+g_{0} S_{k}\right)=i\left(\hat{\mathbf{n}} \times\left(\mathbf{L}+g_{0} \mathbf{S}\right)\right)_{i} \tag{22}
\end{equation*}
$$

Alternatively, through explicit calculation:

$$
\begin{align*}
{[\mathbf{L}, \hat{n} \cdot \mathbf{L}] } & =L_{x} \hat{\mathbf{e}}_{x}\left(n_{x} L_{x}+n_{y} L_{y}+n_{z} L_{z}\right)-\left(n_{x} L_{x}+n_{y} L_{y}+n_{z} L_{z}\right) L_{x} \hat{\mathbf{e}}_{x}+\ldots \tag{23}\\
& =\left(\left(L_{x} L_{y}-L_{y} L_{x}\right) n_{y}+\left(L_{x} L_{z}-L_{z} L_{x}\right) n_{z}\right) \hat{\mathbf{e}}_{x}+\ldots \tag{24}\\
& =\left(\left[L_{x}, L_{y}\right] n_{y}+\left[L_{x}, L_{z}\right] n_{z}\right) \hat{\mathbf{e}}_{x}+\ldots \tag{25}\\
& =i\left(L_{z} n_{y}+L_{y} n_{z}\right) \hat{\mathbf{e}}_{x}+\ldots \tag{26}
\end{align*}
$$

with y and z components omitted for brevity. The last line can be identified as the x-component of a cross product

$$
i \hat{\mathbf{n}} \times \mathbf{L}=i\left(\begin{array}{ccc}
\hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{x} \tag{27}\\
n_{x} & n_{y} & n_{z} \\
L_{x} & L_{y} & L_{z}
\end{array}\right)
$$

After similar treatment for the $g_{0}[\mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{S}]$ term, the final result is obtained.
(b) A state $|0\rangle$ with zero total angular momentum satisfies.

$$
\begin{equation*}
J_{x}|0\rangle=J_{y}|0\rangle=J_{z}|0\rangle=0 \tag{28}
\end{equation*}
$$

Rewrite the expectation value of the commutator from (a)

$$
\begin{align*}
\langle 0|\left(\left[\mathbf{L}+g_{0} \mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{J}\right)_{i}\right]|0\rangle & =\langle 0| i \varepsilon_{i j k} n_{j}\left(L_{k}+g_{0} S_{k}\right)|0\rangle \\
& =i \varepsilon_{i j k} n_{j}\langle 0|\left(L_{k}+g_{0} S_{k}\right)|0\rangle \\
& =i\left(\hat{\mathbf{n}} \times\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}_{k}\right)|0\rangle\right)_{i} . \tag{29}
\end{align*}
$$

So,

$$
\begin{equation*}
\langle 0|\left[\mathbf{L}+g_{0} \mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{J}\right]|0\rangle=i \hat{\mathbf{n}} \times\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}_{k}\right)|0\rangle . \tag{30}
\end{equation*}
$$

Since $J_{i}|0\rangle=0$ and J_{i} is hermitian, also $\langle 0| J_{i}=0$ applies. Therefore, after opening the commutator, we get

$$
\begin{align*}
\langle 0|\left[\mathbf{L}+g_{0} \mathbf{S}, \hat{\mathbf{n}} \cdot \mathbf{J}\right]|0\rangle & =\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}\right) n_{j} J_{j}|0\rangle-\langle 0| n_{j} J_{j}\left(\mathbf{L}+g_{0} \mathbf{S}\right)|0\rangle \tag{31}\\
& =0 \tag{32}\\
& =i \hat{\mathbf{n}} \times\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}_{k}\right)|0\rangle, \forall \hat{\mathbf{n}} . \tag{33}
\end{align*}
$$

Therefore, also

$$
\begin{equation*}
\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}_{k}\right)|0\rangle=0 . \tag{34}
\end{equation*}
$$

Alternatively, on the basis of Wickner-Eckart theorem

$$
\begin{equation*}
\langle 0|\left(\mathbf{L}+g_{0} \mathbf{S}_{k}\right)|0\rangle=g(J L S)\langle 0| \mathbf{J}|0\rangle=0 . \tag{35}
\end{equation*}
$$

3. Proof that the Two-Electron Ground State of a Spin-Independent Hamiltonian is Singlet

(a) Energy of a two-electron system:

$$
\begin{equation*}
E[\psi]=\int d \overrightarrow{r_{1}} d \overrightarrow{r_{2}}\left\{\frac{\hbar^{2}}{2 m}\left[\left|\vec{\nabla}_{1} \psi\right|^{2}+\left|\vec{\nabla}_{2} \psi\right|^{2}\right]+V\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right)|\psi|^{2}\right\}, \tag{36}
\end{equation*}
$$

where ψ is a universal spin-independent wavefunction. The common formula for energy expectation value can be obtained through integration by parts. Consider the kinetic energy

$$
\begin{equation*}
\int d \overrightarrow{r_{1}}\left|\vec{\nabla}_{1} \psi\right|^{2}=\int d \vec{r}_{1}\left(\vec{\nabla}_{1} \psi\right) \cdot\left(\vec{\nabla}_{1} \psi\right)^{*} \tag{37}
\end{equation*}
$$

For the x -component

$$
\begin{equation*}
\int d x\left(\frac{\partial}{\partial x} \psi\right)\left(\frac{\partial}{\partial x} \psi^{*}\right)=\left.\left(\frac{\partial}{\partial x} \psi\right)\left(\psi^{*}\right)\right|_{-\infty} ^{\infty}-\int d x\left(\frac{\partial}{\partial x^{2}} \psi\right) \psi^{*} \tag{38}
\end{equation*}
$$

The first term on the right vanishes under the assumption that $\psi(x \rightarrow \infty)=0$ (and that ψ is normalized $\int d \overrightarrow{r_{1}} d \overrightarrow{r_{2}} \psi^{*} \psi=1$), and consequently $\frac{\partial}{\partial x} \psi(x \rightarrow \infty)=0$. Other components are handled similarly (plus the trivial potential term) to yield:

$$
\begin{equation*}
E=\int d \overrightarrow{r_{1}} d \overrightarrow{r_{2}}\left\{\psi^{*}\left[-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{1}^{2} \psi-\frac{\hbar^{2}}{2 m} \vec{\nabla}_{2}^{2} \psi+V\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right) \psi\right]\right\}=\int d \overrightarrow{r_{1}} d \overrightarrow{r_{2}} \psi^{*} H \psi \tag{39}
\end{equation*}
$$

Alternatively, one could have used Green's identity: $\int_{U}\left(\psi^{*} \nabla^{2} \psi+\nabla \psi \cdot \nabla \psi^{*}\right) d V=$ $\oint_{\partial U} \psi^{*}(\nabla \psi \cdot \mathbf{n}) d S$, where ∂U is boundary of the integration volume U. Due to the boundary condition for ψ right hand side is zero.
This way we proved that E is indeed an expectation value of given Hamiltonian. In other words, according to the variational principle, minimizing the energy functional with respect to the wave function yields the ground state energy:

$$
\begin{equation*}
E_{g}=\min _{\{\psi\}} E \tag{40}
\end{equation*}
$$

If the space part is symmetric, according to Pauli exclusion principles the spin part has to be antisymmetric and there is only one such combination $1 / \sqrt{2}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$, for which $S=0$, and the ground state is singlet. The energy is $E=E_{s}$. If the space part is antisymmetric, the spin part is symmetric with three possible combinations, $|\uparrow \uparrow\rangle, 1 / \sqrt{2}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)$, and $|\downarrow \downarrow\rangle$, all having $S=1$. Then the ground state is triplet with $E=E_{t}$.
(b) Assuming that ψ is real, we realize that

$$
\begin{align*}
\int|\nabla \psi|^{2} & =\int(\nabla \psi) \cdot\left(\nabla \psi^{*}\right)=\int(\nabla \psi) \cdot(\nabla \psi) \tag{41}\\
& =\int(\nabla \pm \psi) \cdot(\nabla \pm \psi)=\int(\nabla|\psi|) \cdot(\nabla|\psi|)=\int|\nabla| \psi| |^{2} \tag{42}
\end{align*}
$$

(consider here " \pm " to be point-wise either plus or minus). Thus, for spatially antisymmetric real wave functions, the energy can be obtained from the same energy functional as for the spatially symmetric case, i.e., $E[\psi]=E[|\psi|]$. However, since we know that the energy is minimized by the symmetric wave function ψ_{s} at energy E_{s}, we may conclude that the energy E_{t} for the antisymmetric ground state ψ_{t} must be higher (or equal when the two electrons do not interact).

