PHYS-E0421 Solid-State Physics (5 cr) Quantum mechanics
Exercise set 8 Spring 2019
Model solutions

1. Landé g-factor

On the basis of Hund’s rules, we know S, L, and J. For a given J, there is still 2J + 1
degeneracy, which will be broken by the magnetic field

n|upH - (L 4 g.S)[n)|?
E, - E|

AE, = ppH - (n|L+ g.S|n) + > i
n'#n

(1)

Magnitude and direction of J is conserved, the magnitudes of L and S are conserved, but
not their directions (see figure). We need to evaluate

(JLSJ,|L + g.S|JLS.J.) (2)
where g, =~ 2 is the electron gyromagnetic ratio. Wickner-Eckart theorem states that
(JLSJ.|L +2S|JLSJ.) = g(JLS)(JLS.J,|J|JLS.J.) (3)
where g(JLS) is the Landé g-factor. To calculate it, we write it more generally as
(JLSJ.|L +2S|J'L'S'J!) = g(JLS)(JLSJ,|J|J'L'S"J") (4)

where both matrix glements vanish unless J = J’, L = L', and S = S’. We multiply both
sides by (J'L'S"J.|J|J"L"S" J!!) and sum over all primed states

> (JLSTL|L+28|JL'S" ) - (J'L'S'J.|.J|J"L" 8" I (5)
J'L'S'J!
=g(JLS) > (JLSL|J|J'L'S' T,y - (J'L'S J|J|J"L"S" J!) (6)
J'L'S' !

Since the sum is over complete set of states, we can use completeness relation ) |a) (o] =
1 and obtain

(JLSJ.|(L 4 28) - J|JLSJ.) = g(JLS)(JLSJ.|J?|JLSJ.) (7)

which we can evaluate since

S2=(J-L?=J?+1*-2L- (8)

P=J-8)2=J2+82-25.J (9)

<~



and

(JLSJ,|J?|JLSJ.) = J(J + 1) (10)
(JLSJ,|L?|JLSJ.) = L(L 4 1) (11)
(JLSJ.|S?|JLSJ.) = S(S +1). (12)
We get
g(JLS)J(J +1) = (JLSJ,|L - J|JLSJ.) — 2(JLSJ,|S - J|JLS.J.) (13)

= ST+ 1)+ L4 1) =SS+ 0]+ [T+ 1)+ 85 +1) — L(L + 1)
(14)

which finally yields
g(JLS):1+J(J+1)+2SJ((SJtll))—L(L+1) (15)



2. Total angular momentum

(a) Commutation relations for the orbital and spin angular momenta

LxL=iL& [LiL]=i) el (16)
k

SxS=iS&[S,S] =1 eijnSk, (17)
k

[Li, Sj] =0 (18)

Here, we have used the Levi-Civita symbol in writing cross producs. Levi-Civita
symbol ;) is defined as

+1 if (4,4, k) is (z,y, 2), (y,z,2) or (z,z,y),
gk = —1 if (4,4, k) is (2,9, 2), (2, 2,9) or (y,, 2), (19)
0 ifer=yory=zorz=ux

With these, the ith component of cross product is (a x b); = Z?:l e eijka’b¥ or
simply (a x b); = &;;,a’ b* in Einstein notation (implied summation).
Using the last commutation relation we can show

[L,S] = [L.€é, + Lyé, + L.é,,S,é, + Syé, + S.é.]

= [Ly, Sy + [Ly, Syl + (L, S:] = 0. (20)
Then (J =L+ 8S),
Lt oS0 3] = (Lo L)+ [L,0-S] 40 [S,0 L +olS,8- 8] (21)
=0 =0

Consider the ith component of the commutator (and n -J = n;J; with implicit
summation over j):
(L + g0S, - J))i = [Li, i Lj] + go[Sis njSj] = nylLi, L] + gony[Si, S
=nji Y egrlr + gonji Yy eirSe =1 Y _ ijrni(Li + goSk)
k k k

and finally writing explicitly the implicit sum over j:

i eijeng(Li + goSk) = i(h x (L + goS))s (22)
gk

Alternatively, through explicit calculation:

[L,n - L] = Lyéy(ngLy +nyLy +n.L;) — (ngLy +nyLy +n.L.)Leép + ... (
= ((LaLly — LyLg)ny + (Lol — Lo Ly)n,)éx + . .. (24
= ([Lg, Lylny + [Lg, L2]n;) €5 + . .. (
= i(Lyny + Lyn,)é, + ... (

with y and z components omitted for brevity. The last line can be identified as the
x-component of a cross product

e, €, &,
mxL=i| nyz ny, n, |. (27)
Lo L, L.

After similar treatment for the go[S, - S| term, the final result is obtained.



(b) A state |0) with zero total angular momentum satisfies.
J510) = J,[0) = J.|0) = 0 (28)
Rewrite the expectation value of the commutator from (a)
(OI([L + goS, 0 - J)i]|0) = (Oliejrn; (Li + 90Sk)|0)
)

= igijkn;{0|(Lk + goSk)|0
= (0 x (O[(L + goS)|0)):- (29)

So,
(OI[L + goS, - JJ|0) = in x (O[(L 4 goSi)|0). (30)

Since J;|0) = 0 and J; is hermitian, also (0|.J; = 0 applies. Therefore, after opening
the commutator, we get

(OI[L: + oS, - J][0) = (O[(L + goS)n;J;[0) — (0ln;.J; (L + 90S)|0) (31)

=0 (32)
=0 X (0|(L + goS)|0), Vn. (33)

Therefore, also
(O[(L 4 goSk)[0) = 0. (34)

Alternatively, on the basis of Wickner-Eckart theorem

(O[(L + g0Sk)|0) = g(JLS)(0[J[0) = 0. (35)



3. Proof that the Two-Electron Ground State of a Spin-Independent Hamiltonian
is Singlet

(a)

Energy of a two-electron system:

E[zﬁ]—/dr*d* ” Vv + [Vau 2| + V (51, 73) 0] 36
= idrz 5 [| 1" + | 2¢|}+ (ri,72)[Y|" ¢, (36)

where 1) is a universal spin-independent wavefunction. The common formula for
energy expectation value can be obtained through integration by parts. Consider the
kinetic energy

/dﬁlﬁlw? = /dﬁ(ﬁﬂb) (V1v)* (37)
For the x-component

Jar(5o0) (5o0) = (go0) )| = [ao(aw)vr @)

The first term on the right vanishes under the assumption that Y(x — 00) =0 (and
that 1 is normalized [ dridr3y*y = 1), and consequently - 9 4p(z — 00) = 0. Other
components are handled similarly (plus the trivial potential term) to yield:

E = /dﬁdra {¢ [v P — v2¢+ V(Tl,rg)d}]} = /dﬁdr‘ézp*quz. (39)

Alternatively, one could have used Green’s identity: fU (1/1*V2¢ + V- Vz/J*) dV =
3§8U Y* (Vi -n) dS, where OU is boundary of the integration volume U. Due to the
boundary condition for ¢ right hand side is zero.

This way we proved that F is indeed an expectation value of given Hamiltonian. In
other words, according to the variational principle, minimizing the energy functional
with respect to the wave function yields the ground state energy:

E,=minF 40
g = mir (40)

If the space part is symmetric, according to Pauli exclusion principles the spin part
has to be antisymmetric and there is only one such combination 1/v/2(|1]) — |{1)),
for which S = 0, and the ground state is singlet. The energy is £ = E,. If the space
part is antisymmetric, the spin part is symmetric with three possible combinations,
1), 1/3V2(|1L) + |11)), and |1]), all having S = 1. Then the ground state is triplet
with £ = E,.

Assuming that v is real, we realize that

/ VY2 = / (V) - (Vo) = [ (Vo) - (V) (41)
~ [0 @z = [TW)- @)= [veP @

(consider here "+” to be point-wise either plus or minus). Thus, for spatially an-
tisymmetric real wave functions, the energy can be obtained from the same energy
functional as for the spatially symmetric case, i.e., E[¢] = E||1|]. However, since we
know that the energy is minimized by the symmetrlc wave function s at energy Fj,
we may conclude that the energy E, for the antisymmetric ground state 1, must be
higher (or equal when the two electrons do not interact).



