
PHYS-E0421 Solid-State Physics (5 cr) Quantum mechanics
Exercise set 8 Spring 2019
Model solutions

1. Landé g-factor

On the basis of Hund’s rules, we know S, L, and J . For a given J , there is still 2J + 1
degeneracy, which will be broken by the magnetic field

∆En = µBH · 〈n|L + geS|n〉+
∑
n′ 6=n

|〈n|µBH · (L + geS)|n′〉|2

En − E′n
(1)

Magnitude and direction of J is conserved, the magnitudes of L and S are conserved, but
not their directions (see figure). We need to evaluate

〈JLSJz|L̂+ geŜ|JLSJ ′z〉 (2)

where ge ≈ 2 is the electron gyromagnetic ratio. Wickner-Eckart theorem states that

〈JLSJz|L̂+ 2Ŝ|JLSJ ′z〉 = g(JLS)〈JLSJz|Ĵ |JLSJ ′z〉 (3)

where g(JLS) is the Landé g-factor. To calculate it, we write it more generally as

〈JLSJz|L̂+ 2Ŝ|J ′L′S′J ′z〉 = g(JLS)〈JLSJz|Ĵ |J ′L′S′J ′z〉 (4)

where both matrix elements vanish unless J = J ′, L = L′, and S = S′. We multiply both
sides by 〈J ′L′S′J ′z|Ĵ |J ′′L′′S′′J ′′z 〉 and sum over all primed states∑

J ′L′S′J ′
z

〈JLSJz|L̂+ 2Ŝ|J ′L′S′J ′z〉 · 〈J ′L′S′J ′z|Ĵ |J ′′L′′S′′J ′′z 〉 (5)

=g(JLS)
∑

J ′L′S′J ′
z

〈JLSJz|Ĵ |J ′L′S′J ′z〉 · 〈J ′L′S′J ′z|Ĵ |J ′′L′′S′′J ′′z 〉 (6)

Since the sum is over complete set of states, we can use completeness relation
∑

α |α〉 〈α| =
1 and obtain

〈JLSJz|(L̂+ 2Ŝ) · Ĵ |JLSJ ′z〉 = g(JLS)〈JLSJz|Ĵ2|JLSJ ′z〉 (7)

which we can evaluate since

Ŝ2 = (Ĵ − L̂)2 = Ĵ2 + L̂2 − 2L̂ · Ĵ (8)

L̂2 = (Ĵ − Ŝ)2 = Ĵ2 + Ŝ2 − 2Ŝ · Ĵ (9)
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and

〈JLSJz|Ĵ2|JLSJz〉 = J(J + 1) (10)

〈JLSJz|L̂2|JLSJz〉 = L(L+ 1) (11)

〈JLSJz|Ŝ2|JLSJz〉 = S(S + 1). (12)

We get

g(JLS)J(J + 1) = 〈JLSJz|L̂ · Ĵ |JLSJz〉 − 2〈JLSJz|Ŝ · Ĵ |JLSJz〉 (13)

=
1

2
[J(J + 1) + L(L+ 1)− S(S + 1)] + [J(J + 1) + S(S + 1)− L(L+ 1)]

(14)

which finally yields

g(JLS) = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(15)
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2. Total angular momentum

(a) Commutation relations for the orbital and spin angular momenta

L× L = iL⇔ [Li, Lj ] = i
∑
k

εijkLk, (16)

S× S = iS⇔ [Si, Sj ] = i
∑
k

εijkSk, (17)

[Li, Sj ] = 0 (18)

Here, we have used the Levi-Civita symbol in writing cross producs. Levi-Civita
symbol εijk is defined as

εijk =


+1 if (i, j, k) is (x, y, z), (y, z, x) or (z, x, y),

−1 if (i, j, k) is (z, y, x), (x, z, y) or (y, x, z),

0 if x = y or y = z or z = x

(19)

With these, the ith component of cross product is (a× b)i =
∑3

j=1

∑3
k=1 εijka

jbk or

simply (a× b)i = εijka
jbk in Einstein notation (implied summation).

Using the last commutation relation we can show

[L,S] = [Lxêx + Lyêy + Lzêz, Sxêx + Syêy + Szêz]

= [Lx, Sx] + [Ly, Sy] + [Lz, Sz] = 0. (20)

Then (J = L + S),

[L + g0S, n̂ · J] = [L, n̂ · L] + [L, n̂ · S]︸ ︷︷ ︸
=0

+g0 [S, n̂ · L]︸ ︷︷ ︸
=0

+g0[S, n̂ · S] (21)

Consider the ith component of the commutator (and n̂ · J = njJj with implicit
summation over j):

([L + g0S, n̂ · J])i = [Li, njLj ] + g0[Si, njSj ] = nj [Li, Lj ] + g0nj [Si, Sj ]

= nji
∑
k

εijkLk + g0nji
∑
k

εijkSk = i
∑
k

εijknj(Lk + g0Sk)

and finally writing explicitly the implicit sum over j:

i
∑
jk

εijknj(Lk + g0Sk) = i(n̂× (L + g0S))i (22)

Alternatively, through explicit calculation:

[L, n̂ · L] = Lxêx(nxLx + nyLy + nzLz)− (nxLx + nyLy + nzLz)Lxêx + . . . (23)

= ((LxLy − LyLx)ny + (LxLz − LzLx)nz) êx + . . . (24)

= ([Lx, Ly]ny + [Lx, Lz]nz) êx + . . . (25)

= i(Lzny + Lynz)êx + . . . (26)

with y and z components omitted for brevity. The last line can be identified as the
x-component of a cross product

in̂× L = i

 êx êx êx
nx ny nz
Lx Ly Lz

 . (27)

After similar treatment for the g0[S, n̂ · S] term, the final result is obtained.
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(b) A state |0〉 with zero total angular momentum satisfies.

Jx|0〉 = Jy|0〉 = Jz|0〉 = 0 (28)

Rewrite the expectation value of the commutator from (a)

〈0|([L + g0S, n̂ · J)i]|0〉 = 〈0|iεijknj(Lk + g0Sk)|0〉
= iεijknj〈0|(Lk + g0Sk)|0〉
= i(n̂× 〈0|(L + g0Sk)|0〉)i. (29)

So,
〈0|[L + g0S, n̂ · J]|0〉 = in̂× 〈0|(L + g0Sk)|0〉. (30)

Since Ji|0〉 = 0 and Ji is hermitian, also 〈0|Ji = 0 applies. Therefore, after opening
the commutator, we get

〈0|[L + g0S, n̂ · J]|0〉 = 〈0|(L + g0S)njJj |0〉 − 〈0|njJj(L + g0S)|0〉 (31)

= 0 (32)

= in̂× 〈0|(L + g0Sk)|0〉, ∀n̂. (33)

Therefore, also
〈0|(L + g0Sk)|0〉 = 0. (34)

Alternatively, on the basis of Wickner-Eckart theorem

〈0|(L + g0Sk)|0〉 = g(JLS)〈0|J|0〉 = 0. (35)
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3. Proof that the Two-Electron Ground State of a Spin-Independent Hamiltonian
is Singlet

(a) Energy of a two-electron system:

E[ψ] =

∫
d~r1d~r2

{
h̄2

2m

[
|~∇1ψ|2 + |~∇2ψ|2

]
+ V (~r1, ~r2)|ψ|2

}
, (36)

where ψ is a universal spin-independent wavefunction. The common formula for
energy expectation value can be obtained through integration by parts. Consider the
kinetic energy ∫

d~r1|~∇1ψ|2 =

∫
d~r1(~∇1ψ) · (~∇1ψ)∗ (37)

For the x-component∫
dx

(
∂

∂x
ψ

)(
∂

∂x
ψ∗
)

=

(
∂

∂x
ψ

)
(ψ∗)

∣∣∣∣∣
∞

−∞

−
∫
dx

(
∂

∂x2
ψ

)
ψ∗ (38)

The first term on the right vanishes under the assumption that ψ(x→∞) = 0 (and
that ψ is normalized

∫
d~r1d~r2ψ

∗ψ = 1), and consequently ∂
∂xψ(x → ∞) = 0. Other

components are handled similarly (plus the trivial potential term) to yield:

E =

∫
d~r1d~r2

{
ψ∗
[
− h̄2

2m
~∇2

1ψ −
h̄2

2m
~∇2

2ψ + V (~r1, ~r2)ψ

]}
=

∫
d~r1d~r2ψ

∗Hψ. (39)

Alternatively, one could have used Green’s identity:
∫
U

(
ψ∗∇2ψ +∇ψ · ∇ψ∗

)
dV =∮

∂U ψ
∗ (∇ψ · n) dS, where ∂U is boundary of the integration volume U . Due to the

boundary condition for ψ right hand side is zero.

This way we proved that E is indeed an expectation value of given Hamiltonian. In
other words, according to the variational principle, minimizing the energy functional
with respect to the wave function yields the ground state energy:

Eg = min
{ψ}

E (40)

If the space part is symmetric, according to Pauli exclusion principles the spin part
has to be antisymmetric and there is only one such combination 1/

√
2(| ↑↓〉 − | ↓↑〉),

for which S = 0, and the ground state is singlet. The energy is E = Es. If the space
part is antisymmetric, the spin part is symmetric with three possible combinations,
|↑↑〉, 1/

√
2(|↑↓〉+ |↓↑〉), and |↓↓〉, all having S = 1. Then the ground state is triplet

with E = Et.

(b) Assuming that ψ is real, we realize that∫
|∇ψ|2 =

∫
(∇ψ) · (∇ψ∗) =

∫
(∇ψ) · (∇ψ) (41)

=

∫
(∇± ψ) · (∇± ψ) =

∫
(∇|ψ|) · (∇|ψ|) =

∫
|∇|ψ||2 (42)

(consider here ”±” to be point-wise either plus or minus). Thus, for spatially an-
tisymmetric real wave functions, the energy can be obtained from the same energy
functional as for the spatially symmetric case, i.e., E[ψ] = E[|ψ|]. However, since we
know that the energy is minimized by the symmetric wave function ψs at energy Es,
we may conclude that the energy Et for the antisymmetric ground state ψt must be
higher (or equal when the two electrons do not interact).
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