
PHYS-E0421 Solid-State Physics (5 cr) Magnetism
Exercise set 9 Spring 2019
Model solutions

1. Magnetic susceptibility (2 p.)

Atomic diamagnetic susceptibility can be evaluated as

χ = − nat
6me

e2µ0
∑
i

〈ψi|r2|ψi〉. (1)

We have to evaluate the
〈
r2
〉

matrix elements. The wave function is defined as

ψ(r) = Ne−cr. (2)

Let’s normalize them (using the Γ-function identities):

1 =

∫
ψ∗ψ =

∫ ∞
0

N2e−2cr4πr2dr = 4πN2 Γ(3)

(2c)3
(3)

N2 =
c3

π
(4)

Expectation value of r2 is then

〈
r2
〉

=

∫ ∞
0

r2N2e−2cr4πr2dr = 4πN2

∫ ∞
0

r4e−2crdr = 4πN2 Γ(5)

(2c)5
=

3

c2

Inserting this into Eq. 1, where the sum over electrons gives just an additional factor of 2
and nat = ρ/(4mu), we obtain χvolume = −9.23 · 10−10 in pretty good agreement with the
experiment. Molar diamagnetic susceptibility is obtained by using NA instead of nat and
yields χmolar = −2.0710−11 m3/mole.
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2. Dipole-dipole interactions (1 p.)

The vector potential of magnetic field produced by magnetic moment m is

A(r) =
µ0
4π

m× r

|r|3
=
µ0
4π

m× r̂

|r|2
(5)

and magnetic flux density is

B(r) = ∇×A =
µ0
4π

(
3r(m · r)

|r|5
− m

|r|3

)
=

µ0
4π|r|3

(3 (m · r̂) r̂−m) . (6)

Thus the magnetic field in the plane perpendicular to the the magnetic moment (m · r=0)
is

B = −µ0
µB

4πr3
(7)

(or B = µ02µB/4πr
3 when r is parallel to m), where m = µB. The interaction energy

E = −µB ·B has maximum value Emax = µBB ≈ 2 µeV, which should be less than kBT
to be significant:

T < µBB/kB ≈ 23 mK. (8)
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3. Heisenberg Hamiltonian

The electron spins are S1 = S2 = 1/2. Thus, the total spin is either S = 0 or S = 1. The
spin wave function for the singlet state (S = 0) is

|χs〉 =
1√
2

(|↑↓〉 − |↓↑〉) with Sz = 0 (9)

and for the triplet state (S = 1)

|χt〉 =


|↑↑〉 with Sz = +1
1√
2

(|↑↓〉+ |↓↑〉) with Sz = 0

|↓↓〉 with Sz = −1

. (10)

Consider S2 = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2. Thus the Hamiltonian can be rewritten

Ĥ =
1

4
(ES + 3ET )− (ES − ET )S1 · S2 (11)

=
1

4
(ES + 3ET )− 1

2
(ES − ET )(S2 − S2

1 − S2
2). (12)

In general, it holds that L2 |L〉 = L(L+ 1) |L〉. In the present case,

S2
i |χj〉 =

1

2

(
1

2
+ 1

)
|χj〉 =

3

4
|χj〉

for i ∈ {1, 2} and j ∈ {s, t}. So,

(S2
1 + S2

2) |χj〉 =
3

2
|χj〉 .

For the total spin
S2 |χs〉 = 0(0 + 1) |χs〉 = 0

and
S2 |χt〉 = 1(1 + 1) |χt〉 = 2 |χt〉 .

Thus,

Ĥ |χs〉 =

[
1

4
(ES + 3ET )− 1

2
(ES − ET )

(
0− 3

2

)]
|χs〉 = ES |χs〉

and

Ĥ |χt〉 =

[
1

4
(ES + 3ET )− 1

2
(ES − ET )

(
2− 3

2

)]
|χt〉 = ET |χt〉 .

Consider operator −JS1 ·S2 (this is the Hamiltonian after neglecting the constant term).
J = ES − ET corresponds to exchange splitting. Like above, we get

〈χs| − JS1 · S2 |χs〉 = 〈χs| − J
1

2

(
0− 3

2

)
|χs〉 =

3

4
J

and

〈χt| − JS1 · S2 |χt〉 = 〈χt| − J
1

2

(
2− 3

2

)
|χt〉 = −1

4
J.

If J > 0, then 〈χt| − JS1 · S2 |χt〉 < 〈χs| − JS1 · S2 |χs〉, i.e., triplet state (e.g., ↑↑,
ferromagnet) is ground state.

If J < 0, then 〈χs| − JS1 · S2 |χs〉 < 〈χt| − JS1 · S2 |χt〉, i.e., singlet state (↑↓, antiferro-
magnet) is ground state.
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