1. Magnetic susceptibility (2 p.)

Atomic diamagnetic susceptibility can be evaluated as

$$
\begin{equation*}
\chi=-\frac{n_{\mathrm{at}}}{6 m_{e}} e^{2} \mu_{0} \sum_{i}\left\langle\psi_{i}\right| r^{2}\left|\psi_{i}\right\rangle \tag{1}
\end{equation*}
$$

We have to evaluate the $\left\langle r^{2}\right\rangle$ matrix elements. The wave function is defined as

$$
\begin{equation*}
\psi(r)=N e^{-c r} \tag{2}
\end{equation*}
$$

Let's normalize them (using the Γ-function identities):

$$
\begin{gather*}
1=\int \psi^{*} \psi=\int_{0}^{\infty} N^{2} e^{-2 c r} 4 \pi r^{2} d r=4 \pi N^{2} \frac{\Gamma(3)}{(2 c)^{3}} \tag{3}\\
N^{2}=\frac{c^{3}}{\pi} \tag{4}
\end{gather*}
$$

Expectation value of r^{2} is then

$$
\left\langle r^{2}\right\rangle=\int_{0}^{\infty} r^{2} N^{2} e^{-2 c r} 4 \pi r^{2} d r=4 \pi N^{2} \int_{0}^{\infty} r^{4} e^{-2 c r} d r=4 \pi N^{2} \frac{\Gamma(5)}{(2 c)^{5}}=\frac{3}{c^{2}}
$$

Inserting this into Eq. 1, where the sum over electrons gives just an additional factor of 2 and $n_{\text {at }}=\rho /\left(4 m_{u}\right)$, we obtain $\chi^{\text {volume }}=-9.23 \cdot 10^{-10}$ in pretty good agreement with the experiment. Molar diamagnetic susceptibility is obtained by using N_{A} instead of $n_{\text {at }}$ and yields $\chi^{\text {molar }}=-2.0710^{-11} \mathrm{~m}^{3} /$ mole.

2. Dipole-dipole interactions (1 p.)

The vector potential of magnetic field produced by magnetic moment m is

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{|\mathbf{r}|^{3}}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{|\mathbf{r}|^{2}} \tag{5}
\end{equation*}
$$

and magnetic flux density is

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\nabla \times \mathbf{A}=\frac{\mu_{0}}{4 \pi}\left(\frac{3 \mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^{5}}-\frac{\mathbf{m}}{|\mathbf{r}|^{3}}\right)=\frac{\mu_{0}}{4 \pi|\mathbf{r}|^{3}}(3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{m}) \tag{6}
\end{equation*}
$$

Thus the magnetic field in the plane perpendicular to the the magnetic moment ($\mathbf{m} \cdot \mathbf{r}=0$) is

$$
\begin{equation*}
B=-\mu_{0} \frac{\mu_{B}}{4 \pi r^{3}} \tag{7}
\end{equation*}
$$

(or $B=\mu_{0} 2 \mu_{B} / 4 \pi r^{3}$ when \mathbf{r} is parallel to \mathbf{m}), where $m=\mu_{B}$. The interaction energy $E=-\mu_{B} \cdot \mathbf{B}$ has maximum value $E^{\max }=\mu_{B} B \approx 2 \mu \mathrm{eV}$, which should be less than $k_{B} T$ to be significant:

$$
\begin{equation*}
T<\mu_{B} B / k_{B} \approx 23 \mathrm{mK} \tag{8}
\end{equation*}
$$

3. Heisenberg Hamiltonian

The electron spins are $S_{1}=S_{2}=1 / 2$. Thus, the total spin is either $S=0$ or $S=1$. The spin wave function for the singlet state $(S=0)$ is

$$
\begin{equation*}
\left|\chi_{s}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \text { with } S_{z}=0 \tag{9}
\end{equation*}
$$

and for the triplet state $(S=1)$

$$
\left|\chi_{t}\right\rangle= \begin{cases}|\uparrow \uparrow\rangle & \text { with } S_{z}=+1 \tag{10}\\ \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) & \text { with } S_{z}=0 \\ |\downarrow \downarrow\rangle & \text { with } S_{z}=-1\end{cases}
$$

Consider $\boldsymbol{S}^{2}=\left(\boldsymbol{S}_{1}+\boldsymbol{S}_{2}\right)^{2}=\boldsymbol{S}_{1}^{2}+\boldsymbol{S}_{2}^{2}+2 \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}$. Thus the Hamiltonian can be rewritten

$$
\begin{align*}
\hat{H} & =\frac{1}{4}\left(E_{S}+3 E_{T}\right)-\left(E_{S}-E_{T}\right) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2} \tag{11}\\
& =\frac{1}{4}\left(E_{S}+3 E_{T}\right)-\frac{1}{2}\left(E_{S}-E_{T}\right)\left(\boldsymbol{S}^{2}-\boldsymbol{S}_{1}^{2}-\boldsymbol{S}_{2}^{2}\right) \tag{12}
\end{align*}
$$

In general, it holds that $\boldsymbol{L}^{2}|L\rangle=L(L+1)|L\rangle$. In the present case,

$$
\boldsymbol{S}_{i}^{2}\left|\chi_{j}\right\rangle=\frac{1}{2}\left(\frac{1}{2}+1\right)\left|\chi_{j}\right\rangle=\frac{3}{4}\left|\chi_{j}\right\rangle
$$

for $i \in\{1,2\}$ and $j \in\{s, t\}$. So,

$$
\left(\boldsymbol{S}_{1}^{2}+\boldsymbol{S}_{2}^{2}\right)\left|\chi_{j}\right\rangle=\frac{3}{2}\left|\chi_{j}\right\rangle
$$

For the total spin

$$
\boldsymbol{S}^{2}\left|\chi_{s}\right\rangle=0(0+1)\left|\chi_{s}\right\rangle=0
$$

and

$$
\boldsymbol{S}^{2}\left|\chi_{t}\right\rangle=1(1+1)\left|\chi_{t}\right\rangle=2\left|\chi_{t}\right\rangle
$$

Thus,

$$
\hat{H}\left|\chi_{s}\right\rangle=\left[\frac{1}{4}\left(E_{S}+3 E_{T}\right)-\frac{1}{2}\left(E_{S}-E_{T}\right)\left(0-\frac{3}{2}\right)\right]\left|\chi_{s}\right\rangle=E_{S}\left|\chi_{s}\right\rangle
$$

and

$$
\hat{H}\left|\chi_{t}\right\rangle=\left[\frac{1}{4}\left(E_{S}+3 E_{T}\right)-\frac{1}{2}\left(E_{S}-E_{T}\right)\left(2-\frac{3}{2}\right)\right]\left|\chi_{t}\right\rangle=E_{T}\left|\chi_{t}\right\rangle
$$

Consider operator $-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}$ (this is the Hamiltonian after neglecting the constant term). $J=E_{S}-E_{T}$ corresponds to exchange splitting. Like above, we get

$$
\left\langle\chi_{s}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{s}\right\rangle=\left\langle\chi_{s}\right|-J \frac{1}{2}\left(0-\frac{3}{2}\right)\left|\chi_{s}\right\rangle=\frac{3}{4} J
$$

and

$$
\left\langle\chi_{t}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{t}\right\rangle=\left\langle\chi_{t}\right|-J \frac{1}{2}\left(2-\frac{3}{2}\right)\left|\chi_{t}\right\rangle=-\frac{1}{4} J .
$$

If $J>0$, then $\left\langle\chi_{t}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{t}\right\rangle<\left\langle\chi_{s}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{s}\right\rangle$, i.e., triplet state (e.g., $\uparrow \uparrow$, ferromagnet) is ground state.
If $J<0$, then $\left\langle\chi_{s}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{s}\right\rangle<\left\langle\chi_{t}\right|-J \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\left|\chi_{t}\right\rangle$, i.e., singlet state ($\uparrow \downarrow$, antiferromagnet) is ground state.

