
PHYS-E0421 Solid-State Physics (5 cr)
Exercise set 6

Dielectric properties of solids 
Spring 2019

Model solutions

1. Depolarization field (∼ Elliot 7.1 b)

The depolarization field is of form

E1 = −Ni

ε0
P , (1)

when the external field Eext is in the direction i ∈ {x, y, z}. The depolarization factors Ni

fulfill sum rule Nx +Ny +Nz = 1.

(i) The sphere is symmetric in x, y, and z directions. The depolarization field must
follow the same symmetry. Thus Nx = Ny = Nz = 1/3 in order to the sum rule to
be fulfilled.

(ii) Assume that the long cylinder (”infinitely long and thin cylinder“) is aligned along
z axis. Then, the depolarization field in z direction must be vanishing due to the
neglible areas of the cylinder ends (and their long distance). Thus Nz = 0, whence
Nx +Ny = 1. In x and y directions the cylinder is symmetric, so Nx = Ny = 1/2 in
order to the sum rule to be fulfilled.

(iii) Assume that the thin disc (”infinitely large and thin disc“) is on a (x, y) plane. Due
to the similar reasoning as above, it must be that Nx = Ny = 0. Thus Nz = 1.

2. Orientational polarizability (∼ Elliott 7.3)

(a) Interaction energy of the dipole moment with the local electric field is

U = −p ·Eloc = −p cos θEloc, (2)

where θ is the angle between the dipole and the electric field.

Probability of finding the dipole at angle θ is given by the Boltzmann factor:

P (θ) = Ne−U/kBT = Nex cos θ, (3)

where N is the normalization constant and we have used a short-hand x = pEloc/kBT .

The dipole’s parallel component to the electric field is p cos θ, and its thermal average
is given by

ppar = 〈p cos θ〉 =

∫
p cos θP (θ)dA∫

P (θ)dA
. (4)

The integral is over the whole configuration space of the dipole. Now, the dipole is
able to adopt any orientation (but its length is fixed), so that the configuration space
is the surface of a sphere. Thus, in the present case the integral

∫
dA can be presented

in spherical coordinates as∫
dA[·] =

∫ 2π

0
dϕ

∫ π

0
sin θdθ[·] =

∫ π

0
2π sin θdθ[·], (5)

where the last equality results from the fact that the integrand does not depend on
the angle ϕ in the present case. Thus, we get

ppar =

∫ π
0 p cos θex cos θ2π sin θdθ∫ π

0 e
x cos θ2π sin θdθ

. (6)
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Let’s make a change of variable t ≡ x cos θ

ppar =
p

x

∫ x
−x te

tdt∫ x
−x e

tdt
. (7)

Integration by parts gives

ppar =
p

x

[
tet
]t=x
t=−x −

∫ x
−x e

tdt∫ x
−x e

tdt
(8)

=
p

x

(
x
ex − e−x

ex − e−x
− 1

)
(9)

= p

(
coth(x)− 1

x

)
= pL(x), (10)

by the definition of the Langevin function L(x).

(b) With the given values, x� 1, and then

coth(x) ≈ 1

x
+
x

3
, (11)

so that

ppar =
px

3
=
p2Eloc

3kBT
. (12)

(c) Now the dipole is able to adopt only two orientations: parallel (θ = 0) and antiparallel
(θ = π). Thus, in this case the integral in the thermal average Eq. (4) reduces to a
sum over all the possible configurations, and we get

ppar = 〈p cos θ〉 = p
cos 0P (0) + cosπP (π)

P (0) + P (π)
= p

ex − e−x

ex + e−x
= p tanh(x) ≈ px =

p2Eloc

kBT
,

(13)

where ”≈“ is evaluated in the limit x� 1.

3. Reflectivity (∼ Elliott 4.13)

Figure 1: A p-polarized light reflecting and transmitting through an interface.

(a) Consider a p-polarized light wave passing from a medium with complex refractive
index n1 into a medium with index n2, see Fig. 1. The values of E and H = nE/µ0c
(we assume that for the materials µ = µ0) of the electromagnetic wave parallel to the
interface are continuous across the boundary. This gives equations{

Ei cos θi − Er cos θi = Et cos θt

Hi +Hr = Ht

⇒

{
Ei cos θi − Er cos θi = Et cos θt

n1Ei + n1Er = n2Et
. (14)
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The reflectivity and transmission are defined as r = Er/Ei and t = Et/Ei, respec-
tively. Thus, we get {

cos θi(1− r) = t cos θt

n1(1 + r) = n2t
. (15)

From this pair of equations we can solve r and t to obtain

r =
n2 cos θi − n1 cos θt
n1 cos θt + n2 cos θi

(16)

and

t =
2n1 cos θi

n1 cos θt + n2 cos θi
. (17)

These are Fresnel equations for p-polarized light. (Note that the signs depend on the
choice of the directions of the vectors, see Fig. 1. For reflectivity and transmission
factors for intensities there is no such dependence.)

(b) The asked factors t1, t2, and r are illustrated in Fig. 2.

Figure 2: Interface between materials with refractive indices 1 and n = nr+iκi, and transmission
and reflection factors for normal incidence.

By using the results of (a) with θi = θt = 0 and n1/2 = 1 and n2/1 = n dependening
on the direction of the light, we get t1 = 2/(n + 1), t2 = 2n/(n + 1), and r =
−(n− 1)/(n+ 1). For the intensity I = EE∗ = |E|2, we have

R =
Ir
Ii

=
|Er|2

|Ei|2
= |r|2 =

|n− 1|
|n+ 1|

=
(nr − 1)2 + κ2i
(nr + 1)2 + κ2i

. (18)

(c) The propagation of light is decribed by the plane wave

Ei = E0e
iω(nx

c
−t), (19)

so that the amplitude of the light is absorbed by factor

ei
nωd
c (20)

during the propagation through the medium of thickness d. The light can travel
through a medium after a series of reflections within the medium as illustrated in
Fig. 3.

Figure 3: Slab of thickness d and light transmitting through. Note that the reflected waves are
tilted for visual convenience.
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Thus, the total transmitted light is a sum of all these components:

Et =
[
E0t1e

inωd/ct2

]
+
[
E0t1e

inωd/creinωd/creinωd/ct2

]
+
[
E0t1e

inωd/creinωd/creinωd/creinωd/creinωd/ct2

]
+ . . . (21)

=E0t1t2e
inωd/c

∞∑
m=0

(
r2e2inωd/c

)m
(22)

=E0t1t2
einωd/c

1− r2e2inωd/c
, (23)

where we the sum was evaluated as a geometric sum (|reinωd/c|2 = |r|2 |e−κiωd/c|2 < 1,
κi > 0).

For an optically thin sample (n ∼ 1+i0), we have t1t2 ∼ 1 and r2 ∼ 0 (we approximate
the polynomial terms and keep only the dominant exponential term). Then Et ∼
E0e

inωd/c, and It = |Et|2 ∼ I0e−2κiωd/c = I0e
−K(ω)d, where K(ω) = 2ωκi/c.
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