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Exercise session 1
Model solutions

1. Effective mass

a) For a free electron, E(k) = h̄2k2/2me and

m∗
e =

h̄2

∂2E/∂k2
= me. (1)

b) For a 1D tight-binding band, E(k) = ϵi − αi − 2βi cos(ka), and

m∗
e =

h̄2

∂2E/∂k2
=

h̄2

2a2βi cos(ka)
. (2)

At the zone boundary, k = π/a and cos(ka) = −1. Thus, m∗
e = −h̄2/2a2βi. The

width of the band is W = maxk[E(k)]−mink[E(k)] = 4βi, so

m∗
e =

2h̄2

a2W cos(ka)
. (3)

The group velocity of an electron is

vg =
1

h̄

∂E

∂k
=

1

h̄
2aβi sin(ka). (4)

At k = π/2a, vg is a maximum 2aβi/h̄. At this point, m∗
e = ∞. However, vg is

well behaved, even if m∗
e is not, so there are no discontinuities in conductivity, for

example.

Consider that the current model describes a metal, i.e., the band is half-filled. Then,
applying a DC electric field cause a shift in k according to k(t) = k(0)− eEt/h̄, see,
e.g., Elliott Eq. (6.22). Thus, an oscillating behaviour of vg(k) might imply oscillating
behaviour with time, vg(t), giving an AC current. However, this will only be observed
if the electron can travel a distance in k-space δk > π/a between collisions. However,
collisions in a normal metal are so frequent that this is not possible. For example, for
τ ≈ 10−14 s and E ≈ 1Vm−1, δk = eEτ/h̄ ≈ 16m−1 (compare k = π/a ≈ 1010m−1).

2. Semiclassical theory

The Hamiltonian of the system is

H0(r) = − h̄2

2m
∇2 + v(r) (5)

where v(r+R) = v(r) is a periodic potential. With this Hamiltonian, the solutions of the
time-independent Schrödinger equation are Bloch wave functions satisfying

ψ(r+R) = eik·Rψ(r). (6)

The time evolution ψ(r, t) can be obtained from time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= H0ψ (7)
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in the form of

ψ(r, t) = e−iH0(r)t/h̄ψ(r, 0). (8)

Now, consider

ψ(r+R, t) = e−iH0(r+R)t/h̄ψ(r+R, 0) (9)

= e−iH0(r)t/h̄eik·Rψ(r, 0) (10)

= eik·Re−iH0(r)t/h̄ψ(r, 0) (11)

= eik·Rψ(r, t). (12)

Thus, (k(t) = k(0), i.e., the long wavelength factor remains unaffected during the time-
evolution.

Now, consider the Hamiltonian with an electric field

H = H0 + eE · r. (13)

Proceeding like above, the time-evolution of the wave function becomes

ψ(r+R, t) = e−iH(r+R)t/h̄ψ(r+R, 0) (14)

= e−i(H(r)t+eE·Rt)/h̄eik·Rψ(r, 0) (15)

= eik·Re−ieE·Rt/h̄e−iH(r)t/h̄ψ(r, 0) (16)

= ei(k−eEt/h̄)·Rψ(r, t). (17)

Here, r-dependent phase terms can be collected together to a wave vector that depends on
time

k(t) = k(0)− eEt/h̄. (18)

3. Landau levels

The energy separation between two Landau levels n and n+ 1 is

∆E = En+1 + En =
h̄2k2z
2m

+ (n+
3

2
)h̄ωc −

h̄2k2z
2m

− (19)

− (n+
1

2
)h̄ωc =

3

2
h̄ωc −

1

2
h̄ωc = h̄ωc =

h̄eB

m
(20)

Under a strong magnetic field strength of 1 T, the energy separation is approximately 0.7
meV. The thermal energy at the room temperature is approximately equal 25.7 meV and
at the 1K (kBT ≈ 0.1 meV). at this point we can conclude, that the effects of Landau
levels are only observed when the mean thermal energy is smaller than the energy level
separation, kT ≪ h̄ωc, meaning low temperatures and strong magnetic fields.
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