
PHYS-E0421 Solid-State Physics (5cr), Spring 2019
Exercise session 3
Model solutions

1. Silicon

a) The diamond structure consists of two FCC-lattices that are shifted by a
4 (⃗i+ j⃗ + k⃗)

relative to each other, see figure below (Ibach-Lüth Fig. 2.12). The cubic cell contains
4 atoms inside, 6 atoms on faces and 8 atoms in corners. Atoms on faces are shared
by two neighbouring cells, and atoms in corners by eight cells. Then, the number of
atoms per cell is 4 + 1

2 · 6 + 1
8 · 8 = 8.

The Bravais lattice basis consists of two atoms at (0, 0, 0) and
(
a
4 ,

a
4 ,

a
4

)
.

Alternatively: Get the number of atoms from knowledge of the basis. We know that
there are two atoms in the primitive cell (from the basis). Calculate the volumes of
the primitive cell and the cubic cell. This will give that the cubic cell volume is 4
times larger, which means that it must contain 8 atoms.

b) Silicon has 4 valence electrons (outer shell 3s23p2) and phosphorus 5 (3s23p3). The
extra electron is loosely bound to the positive phosphorus ion. This means that
the defect acts as a donor and the conductivity is n-type. The motion of the extra
electron in the bound state can be described by the hydrogen-like atom model. Its

energy spectrum is En = m∗
ee

4

2(4πεε0h̄)
2

1
n2 .

The parameters m∗
e and ε describe properties of the material and, in general, they

are tensor quantities. The dielectric constant ε can be written as a scalar due to
the cubic symmetry of silicon lattice, while the effective mass has differant values in
the transverse and longitudinal directions. In this exercise, we use just an average
m∗

e = 0.3me.

With the dielectric constant ε = 11.7, the ionization energy Ei = E1−E∞ ≈ 28 meV.

c) Similarly, the Bohr radius for hydrogen a0 = ε0h2

πmee2
can be transformed into the

expression valid for our model by making the following changes: ε0 → εε0 and me →
m∗

e:

r0 =
εε0h

2

πm∗
ee

2
=

ε

m∗
e/me

a0 ≈ 20.6 Å. (1)

Using the density of silicon atoms n = 8
a3

[8 atoms in a unit cell a3 as we found in a],
the number of atoms in a sphere of radius r0 is N = n · 4

3πr
3
0 ≈ 1800.

d) The distance between impurities 4r0 corresponds to concentration n = 1
(4r0)

3 = 1.8 ·
1018 cm−3. This is a large number compared to the intrinsic carrier concentration
ni ≈ 1010 cm−3.

2. Intrinsic semiconductor

a) For an intrinsic semiconductor

EF =
EC + EV

2
+

3

4
kT ln

(
m∗

p/m
∗
n

)
, (2)

(see Ibach-Lüth 12.2 for the derivation). Inserting m∗
p/m

∗
n = 1

3 yields

EF =
EC + EV

2
− 0.82kT ≈ EC + EV

2
− 1kT. (3)
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The expression for the Fermi energy was obtained using assumptions EC −EF ≫ kT
and EF −EV ≫ kT , which allow the approximation for the Fermi-Dirac distribution

f(E, T ) =
1

e(E−EF)/kT + 1
≈ e−(E−EF)/kT . (4)

This approximation is also called the approximation of non-degeneracy. Here, we
estimate that ”· ≫ ·” is equivalent to ”· > 3·”. So, we need to satisfy conditions{

EC − EF ≫ kT

EF − EV ≫ kT
⇒

{
EC − EF > 3kT

EF − EV > 3kT
⇒

{
EC − EV > 4kT

EC − EV > 8kT
, (5)

where we have used Eq. (3). For example, from the condition EF − EV = EV+EC
2 −

EV − 1kT > 3kT we get the final answer EC − EV > 8kT .

b) Inserting numbers into Eq. (2), we get EF − EV = Eg/2 = 0.115 eV for T = 0 K
and EF − EV = Eg/2 + 0.065 eV = 0.18 eV for T = 300 K. The electron and hole
concentrations are

n = 2

(
2πm∗

nkT

h2

)3/2

exp

(
−EC − EF

kT

)
(6)

and

p = 2

(
2πm∗

pkT

h2

)3/2

exp

(
EV − EF

kT

)
, (7)

respectively. For T = 0 K, n = p = 0. For T = 300 K, n = p = 6.7 · 1021 m−3. Recall
that in an intrinsic semiconductor the number of electrons in the conduction band is
equal to the number of holes in the valence band.

3. Doped semiconductors

Assuming non-degeneracy, the Maxwell-Boltzmann statistics can be applied. Then, n =
NC

effe
−(EC−EF)/kT = Nd. Solving the equation for EF yields

EF = EC − kT ln
NC

eff

Nd
. (8)

As in Exercise 2, the nondegeneracy condition can be written as EC − EF > 3kT . Then,

ln
NC

eff
Nd

> 3 and Nd < NC
effe

−3 ≈ 0.05NC
eff . Inserting NC

eff = 2
(
2πm∗

nkT
h2

)3/2
, the maximum

defect concentrations can be evaluated. For silicon (m∗
n = 0.3me), at 300 K Nd = 2.1 ·

1017 cm−3, at 77 K Nd = 2.7 · 1016 cm−3. For GaAs (m∗
n = 0.07me), at 300 K Nd =

2.2 · 1016 cm−3, at 77 K Nd = 2.8 · 1015 cm−3.

4. Density of charge carriers

(a) Intrinsic conductivity at T = 300 K? We use the law of mass action and the equality
ni = pi,

pi =
√
NC

effN
V
effe

−Eg/2kT = 2

(
kT

2πh̄2

)3/2

(m∗
nm

∗
p)

3/4e−Eg/2kT . (9)

We can evaluate the constants and write the equation in the following convenient
numerical form [see A&M Eq. (28.20)]

pi = 2.5

(
m∗

p

me

)3/4(m∗
n

me

)3/4( T

300 K

)3/2

e−Eg/2kT × 1019 cm−3 (10)

The intrinsic carrier concentrations we obtain, pi = ni ≈ 1011 cm−3, are very small
compared to the hole concentration we obtain in part (b) for the p-doped semicon-
ductor. Therefore, also the intrinsic conduction is negligible at room temperature.
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Figure 1: The hole concentrations as a function of inverse temperature.

(b) What is the conductivity at 300 K when the hole mobility µp is 100 cm2/Vs? The
fraction of ionized acceptors, N−

a , can be estimated using [see I&L Eq. (12.25)]

p ≈ 2NA

(
1 +

√
1 + 8

NA

NV
eff

eEa/kT

)−1

, (11)

where Ea = EA−EV = 0.1 eV. (This form applicable for p-type conducivity instead of
the n-type one is similar to the one in the I&L book. Only the donor and conduction
band indices are changed to acceptor and valence band ones, respectively. This can be
justified by simply noting that for holes the energy axis points to opposite direction
than for electrons. Note that here we have used modified Fermi-Dirac function,
compare with I&L and see discussion there.)

We obtain p = N−
A + pi ≈ N−

A ≈ 9.6 · 1015 cm−3 ≈ NA. The conductivity in terms of
the carrier concentrations and mobilities is

σ = e(nµn + pµp) (12)

Because n = ni ≪ p, we may approximate

σ ≈ epµp ≈ 160 (Ωm)−1. (13)

(c) Logarithm of the hole concentration, ln p, versus reciprocal temperature 1/T? See
Fig. 1. The following ranges can be observed (see I&L Fig. 12.10, p. 436):

• Freeze-out range (low T ): not all acceptors are ionized. Equation (11) has

the asymptotic form p ≈
√

NANV
eff/2e

−Ea/2kT , i.e., the plot displays the slope

−Ea/2k.

• Saturation range (intermediate T ): all acceptors ionized, Eq. (11) gives p ≈ NA.

• Intrinsic range (high T ): thermal exitations across the energy band gap become
possible. Slope of −Eg/2k, see Eq. (9).
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