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1. p-n-junction

(a)

We will start with Eq. (6.246) from Elliot which gives the temperature dependence of the chemical potential

µn = EC − kBT ln
NC
Nd

, (1)

where Nd is the donor concentration in n-type semiconductor and Nc is the effective concentration of states
at the conduction band edges. Energy EC is the energy of the conduction belt. Similar equation can be
written for p-type semiconductor so that

µp = EV + kBT ln
NV
Na

, (2)

where EV is the valence band energy and NV is the effective concentration of the valence band and NA the
acceptor concentration.
When then junction is formed, different sides of the junction have different chemical potentials,difference
between chemical potentials is called as the contact potential

eφc = µn − µp = EC − EV − kBT ln
NC
Nd
− kBT ln

NV
Na

= EC − EV − kBT
(

ln
NC
Nd

+ ln
NV
Na

)
= EC − EV − kBT ln

NCNV
NdNa

The law of mass action is given by

n2i = NCNV e
−Eg/kT

⇔
NCNV = eEg/kTn2i ,

where band gap energy is Eg = EC − EV .

By substituting this to previously obtained equation we can derive the result.

eφc = EC − EV − kBT ln
NCNV
NdNa

= EC − EV − kBT ln
eEg/kTn2i
NdNa

= EC − EV − kBT ln
n2i

NdNa
− kBT

Eg
kBT

= EC − EV − kBT ln
n2i

NdNa
− EC + EV

= kBT ln
NdNa
n2i

,

so we obtain Elliot’s Eq. (8.38a)

φc =
kBT

e
ln
NdNa
n2i

. (3)
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(b)

Poisson’s equation is given by
∂2φ(z)

∂2z
= −ρ(z)

εrε0
, (4)

where ρ is the charge density, and εrε0 is the permittivity.
In IL the Schottky model the charge density is shown in the p− n junction at z = 0.

Figure 1: Spatial variation of the charge density. The depletion region for different for the n- and p-type of
semiconductor.

The charge density can be approximated so that it is

ρ(z) =

{
−eNa −dp < z < 0

eNd 0 < z < dn

Gauss’ law in one dimension can be written as

∇ · E(z) =
∂E(z)

∂z
=
ρ(z)

εrε0
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and we can see that electric field E(z) = −∂φ(z)∂z . Electric field form is shown in Fig. 1 where we can see
that it is linear in both regions and E(−dp) = E(dn) = 0.
Now we can integrate the Gauss’ law over the depletion region when assuming the approximation for the
charge density. We can divide the integration into two parts so that

∫ dn

0

∂E(z)

∂z
dz =

∫ dn

0

ρ(z)

εrε0
dz

E(dn)− E(0) =
1

εrε0

∫ dn

0

eNddz

E(0) = −eNddn
εrε0

similarly ∫ 0

−dp

∂E(z)

∂z
dz =

∫ 0

−dp

ρ(z)

εrε0
dz

E(0)− E(−dp) =
1

εrε0

∫ 0

−dp
−eNadz

E(0) =
eNadp
εrε0

when knowing that the form is linear in those regions we can formulate the electric field so that

E(z) =

{
− eNa

εrε0
(z + dp) −dp < z < 0

eNd

εrε0
(z − dn) 0 < z < dn

Now when we know the relation between the potential and electric field we can integrate again in the two
regions to obtain.

φn(z) =

∫
E(z)dz =

∫
eNd
εrε0

(z − dn)dz =
eNd
2εrε0

(z − dn)2

φp(z) =

∫
E(z)dz =

∫
−eNa
εrε0

(z + dp)dz = − eNa
2εrε0

(z + dp)
2

When looking at the form given in Fig. 1 we can obtain actual definition of the potential in both sides of
the junction

φ(z) =

{
φn(∞)− φn(z) = φn(∞)− eNd

2εrε0
(z − dn)2 0 < z < dn

φp(−∞)− φp(z) = φp(−∞) + eNa

2εrε0
(z + dp)

2 −dp < z < 0

When taking into account the charge neutrality of the homojunction we can write Nadp = Nddn and solving
the derived potential at z = 0 we have

φ(0) = φp(−∞) +
eNa
2εrε0

d2p = φn(∞)− eNd
2εrε0

d2n

Contact potential is therefore

φc = φn(∞)− φp(−∞) =
e

2εrε0
(Nad

2
p +Ndd

2
n) (5)
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(c)

Using the charge neutrality Nddn = Nadp and previous equation we can derive

Nad
2
p +Ndd

2
n =

2φcεrε0
e

Nad
2
p +Nd

(
Na
Nd

)2

d2p =
2φcεrε0

e

d2p
NaNd +N2

a

Nd
=

2φcεrε0
e

d2p =
2φcεrε0Nd

eNa(Nd +Na)

dp =

[
2φcεrε0Nd

eNa(Nd +Na)

]1/2
same for dn can be obtained by just changing indices so that

dn =

[
2φcεrε0Na

eNd(Nd +Na)

]1/2
,

which form together Eg. (8.41) in Elliot’s book.

2. p-n-junction

We know values

ni ≈ 1.5× 1010cm−3

εr = 11.7

ε0 = 8.854× 10−12F/m

A = 0.508mm2

Na = 4× 1018cm−3

Nd = 1016cm−3

T = 300K

kB = 8.617× 10−5eV/K

e = 1.602× 10−19C

Equation for potential difference over the junction was derived in exercise 1. so that

φc =
kBT

e
ln
NdNa
n2i

=
8.617× 10−5eV/K × 300K

e
ln

(
4× 1018mm−3 × 1016mm−3

(1.5× 1010mm−3)2

)
= 0.848V.

Depletion area widths were also derived and we obtain

dn =

[
2φcεrε0Na

eNd(Nd +Na)

]1/2
=

[
2× 0.848V× 11.7× 8.854× 10−12F/m× 4× 1024m−3

1.602× 10−19C× 1022m−3(1022m−3 + 4× 1024m−3)

]1/2
= 3.3× 10−7m

dp =

[
2φcεrε0Nd

eNa(Nd +Na)

]1/2
=

[
2× 0.848V× 11.7× 8.854× 10−12F/m× 1022m−3

1.602× 10−19C× 4× 1024m−3(1022m−3 + 4× 1024m−3)

]1/2
= 8.3× 10−10m

Also the electric field was derived in ex 1. to be

E(z = 0) = −eNa
εrε0

dp = −1.602× 10−19C× 4× 1024m−3

11.7× 8.854× 10−12F/m
× 8.3× 10−10m = −5.13× 106 V/m

4



Capacitance can be shown to be

C =

∣∣∣∣dQdV

∣∣∣∣ =

∣∣∣∣eNdA ddn
dV

∣∣∣∣ .
I found from Ref. [1] how potential V affects depletion width

ddn
dV

=
d

dV

[
2εrε0Na(φc − V )

eNd(Nd +Na)

]1/2
= −1

2

[
2εrε0Na

eNd(Nd +Na)

]1/2
(φc − V )−1/2.

since we know that

(φc − V )1/2 =

[
2εrε0Na

eNd(Nd +Na)

]−1/2

× dn,

we can plug this back to previous equation to obtain

ddn
dV

= − 1

2dn

[
2εrε0Na

eNd(Nd +Na)

]
,

which can be plugged to the equation of conductivity to obtain

C =
Aεrε0Na

dn(Na +Nd)

=
0.508× 10−6m2 × 11.7× 8.854× 10−12F/m× 4× 1024m−3

3.3× 10−7m(4× 1024m−3 + 1022m−3)

= 1.59× 10−10F

Since C ∝ (φc−V )−1/2 we obtain a curve which looks something like in Fig. 2. I set φ = 1 which is noticed
in the plot as a great increase in capacitance as V → 1.

Figure 2: Capacitance dependency on external voltage.
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3. I-V characteristic

We assume that a silicon solar cell has the I-V characteristics (Eq. (8.89) in Elliott) as

I = I0(exp[eV/kBT ]− 1)− IS , (6)

where I0 = 10−12A and under illumination IS = 10mA. The open circuit voltage is determined from Eq. (6)
by setting I = 0, so that

Voc =
kBT

e
ln

(
Is
I0

+ 1

)
≈ kBT

e
ln

(
Is
I0

)
. (7)

The short circuit current is now obtained by setting V = 0 so that Isc = IS . Theoretical maximum power is
P thmax = VocIsc, which won’t be obtained due to the I-V characteristic. Realistic maximum power is the area
of the largest rectangle presented in Elliott’s book Fig. 8.82 shown below.

Figure 3: C-V characteristics under illumination IS . Maximum power corresponding to the dark square.

Power is obtained by

P = IV = (I0(exp[eV/kBT ]− 1)− IS)V.

To maximise this we solve when the derivative in respect to V is zero.

∂P

∂V
=

∂

∂V
(I0(exp[eV/kBT ]− 1)− IS)V

= I0(exp[eV/kBT ]− 1)− Is + I0
eV

kBT
exp[eV/kBT ] = 0.

Since I0 � Is, we can estimate

Is ≈ I0 exp[eVmax/kBT ]

(
1 +

eVmax
kBT

)
.
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For open circuit voltage we found that Is = I0 exp[eVoc/kBT ] which we can substitute here so that

I0 exp[eVoc/kBT ] = I0 exp[eVmax/kBT ]

(
1 +

eVmax
kBT

)
⇔

Voc = Vmax +
kBT

e
ln

(
1 +

eVmax
kBT

)
⇔

Vmax = Voc −
kBT

e
ln

(
1 +

eVmax
kBT

)
Since logarithm is not that strict to the changes of argument we can do last approximation that

Vmax ≈ Voc −
kBT

e
ln

(
1 +

eVoc
kBT

)
.

With this maximum voltage we can obtain maximum current by plugging this to the IV-relation

Imax = I0(exp[eVmax/kBT ]− 1)− Is
Imax ≈ −Is

by assuming that kBT/eVmax � 1. Now we can write maximum power by multiplying obtained voltage and
current

Pmax = VmaxImax = −Is
[
Voc −

kBT

e
ln

(
1 +

eVoc
kBT

)]
(8)

Total power is given by

PT = IscVoc = Is
kBT

e
ln

(
Is
I0

)
Fill factor is given by

FF =
Pmax
PT

=
−Voc + kBT

e ln
(

1 + eVoc

kBT

)
kBT
e ln

(
Is
I0

)

Lastly the load resistance is defined as

Rload =
Vmax
Imax

=

[
Voc − kBT

e ln
(

1 + eVoc

kBT

)]
−Is

Negative sign in these equations depends on how charge is defined as can be seen from Fig. 3.
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