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1. p-n-junction

(a)

We will start with Eq. (6.246) from Elliot which gives the temperature dependence of the chemical potential

N,
fin = Ec — kpTln =, (1)
Ng
where Ny is the donor concentration in n-type semiconductor and N, is the effective concentration of states
at the conduction band edges. Energy F¢ is the energy of the conduction belt. Similar equation can be
written for p-type semiconductor so that

uPZEv-l-k‘BTln&, (2)
Nq
where Fy is the valence band energy and Ny is the effective concentration of the valence band and N4 the
acceptor concentration.

When then junction is formed, different sides of the junction have different chemical potentials,difference
between chemical potentials is called as the contact potential

N, N
ede = pin — ptp = Bc — By — kpTIn =< — kpTln =~

Nd Na
Nc Ny
=FEc—FEy —kgT |In— +1
c v — kB (DNd+HNa)
NcNy

=FEc - LbEy —kpT1
c vV — KB nNdNa

The law of mass action is given by
n? = NoNye Eo/iT
=
NcNy = eEg/anf,

where band gap energy is £, = Ec — Ey.

By substituting this to previously obtained equation we can derive the result.

NeNy
.= Ec — By — kgT1
ep ¢ = Bv —kpT'ln =
oFo /KT 2
—Ec— By —kgThh & "%
c v —kplln NaN.
n? E
=Fc—Ey — kTl L kT
c v —kp nNdNa sl T
n?
=Fc—FEy — kTl t— —F E
c v — KB nNdNa c+ Ly
NgN,
= kpTIn —42
n;
so we obtain Elliot’s Eq. (8.38a)
kT ., NgN,
.= 1 : 3
¢ Ry (3)
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(b)
Poisson’s equation is given by
P6z) __pl2) W

02z €€’

where p is the charge density, and €,.¢q is the permittivity.
In IL the Schottky model the charge density is shown in the p — n junction at z = 0.
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Figure 1: Spatial variation of the charge density. The depletion region for different for the n- and p-type of
semiconductor.

The charge density can be approximated so that it is

—eN, —dp <2z<0
p(z) =
eNyg 0<z<d,

Gauss’ law in one dimension can be written as

b= 20 0




and we can see that electric field E(z) = —%(ZZ). Electric field form is shown in Fig. 1 where we can see
that it is linear in both regions and E(—d,) = E(d,) = 0.

Now we can integrate the Gauss’ law over the depletion region when assuming the approximation for the
charge density. We can divide the integration into two parts so that

dn dy
[ g, [y,
0 0z 0 €r€o

1 dn
E(d,)— E(0) = v /0 eNgdz

e]Vddn

€r€o

E(0) = —

similarly

0 0
/ 0BGy, - / ey,
—dp 0z —dp €r€o

E0) — E(—dp) = ! /0 —eN,dz

€r€p —dp
eNgd,

€r€o

E(0) =

when knowing that the form is linear in those regions we can formulate the electric field so that

B(z) = J\;Eo(z—kd) —d, <2z<0
24 (z — dy) 0<z<d,

€r€0

Now when we know the relation between the potential and electric field we can integrate again in the two
regions to obtain.

€-€0 2€,€0
N, eN,
= [ B(z)dz = a dy)dz = ——2 d,)?
/) = [~ = - (4 )

When looking at the form given in Fig. 1 we can obtain actual definition of the potential in both sides of
the junction

Dp(—00) = dp(2) = pp(—00) + (2 + dp)?  —dp<2<0

2€,€0

— z) = 00) — eNg __ 2 .
¢(Z)={¢n(oo Pn(2) = Pn(00) — 5.8 (2 — dn) 0<z<d,

When taking into account the charge neutrality of the homojunction we can write N,d, = Ngd,, and solving
the derived potential at z = 0 we have

- €]Vﬁ 2 e]Vd
¢(O) - ¢P( OO) + 2€r€0dp - ¢n(00) 267“60 n
Contact potential is therefore
e
be = Pn(00) — p(—00) = E(Nadz + Nud2) (5)



(c)

Using the charge neutrality Nqd,, = N,d, and previous equation we can derive

2 c€r
Nadl? + Nyd2, = 22500
e
N, \? 2¢.€,-€
2 a 2 c€r€o
Nadp + Ny <]Vd> dp = .
d2 NoNa + Ng _ 2¢c€r€0
p Nd (&
2¢c€-€60Ng

42 = ——PereoTd
P T eN,(Ng + Ny)

d = 2¢c€r€ONd 1/2
P eNy(Ng + Ny)

same for d,, can be obtained by just changing indices so that

_ |: 2¢c€r€ONa :|1/2
ne eNd(Nd =+ Na) ’

which form together Eg. (8.41) in Elliot’s book.

2. p-n-junction

We know values

n; ~ 1.5 x 10"%m™3

6 = 11.7
€0 = 8.854 x 10~ 2F/m
A = 0.508mm?

N, =4 x10%cm™3

Ny =10%cm™3
T = 300K

kp = 8.617 x 10~°eV/K
e =1.602 x 1071C

e

Equation for potential difference over the junction was derived in exercise 1. so that
NyN, 8.617x107%V/K x 300K | (4 x 10"¥mm =3 x 10 mm—3
n = n

kgT
= 1
e n? e (1.5 x 10'°mm—3)?2

2

) = 0.848V.

Depletion area widths were also derived and we obtain

B [ 20eere)Na 177 [2 % 0.848V x 11.7 x 8.854 x 107'2F /m x 4 x 10%m~3
n - ) -

1/2
=33x107"
eNg(Ng+ N, 1.602 x 10~19C x 1022m—3(1022m—3 + 4 x 1024m~3) } x m

3 { 2¢peereoNy ]1/2 B { 2 x 0.848V x 11.7 x 8.854 x 107 2F /m x 10%2m 3
P ) -

1/2
—rerer e =83x10710
eNuy(Ng + N, 1.602 x 10=19C x 4 x 1024m—3(1022m~=3 + 4 x 1024m_3)} % m

Also the electric field was derived in ex 1. to be

eN, 1.602 x 107°C x 4 x 10**m—3
Elz=0)= — %4 — _ 3x107%m = —5.13 x 10°
(z=0) == "d 117 % 8854 x 10-12F/m _ * 03X 1077 m = =513 107 V/m




Capacitance can be shown to be

Q| _
v |

eNgA dd,
dv

e

I found from Ref. [1] how potential V affects depletion width

dd, d [26c0Nu(de — V)} 2 [ 2e,e0N,

dv 2

1/2
L o —-1/2
dV  dV | eNg(Ng+ N,) )] ($e = V)~ /%

eNa(Ng + N,

since we know that

2¢e,.€9 N, -1/
_yy/2 = | __Zrt0fte d
(QSC ) eNd(Nd+Na) X ny
we can plug this back to previous equation to obtain
ddy 1 [ 26,
dV. 2d, |eNg(Ng+ N,) |’

which can be plugged to the equation of conductivity to obtain

Ae.egN,
dn(Ng + Ng)

0.508 x 10~%m?2 x 11.7 x 8.854 x 10~ 12F /m x 4 x 1024m~3
- 3.3 % 10 "m(4 x 10%m3 + 102m-3)
=1.59 x 107'°F

C =

Since C o (¢, — V)2 we obtain a curve which looks something like in Fig. 2. I set ¢ = 1 which is noticed
in the plot as a great increase in capacitance as V' — 1.
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Figure 2: Capacitance dependency on external voltage.



3. I-V characteristic

We assume that a silicon solar cell has the I-V characteristics (Eq. (8.89) in Elliott) as
I = Io(expleV/kpT) — 1) — Is, (6)

where Iy = 10712A and under illumination Is = 10mA. The open circuit voltage is determined from Eq. (6)

by setting I = 0, so that
kgT I kT I
e=—In—=4+1] = In{—|.
1% . n(IO—i—) - n(IO) (7)

The short circuit current is now obtained by setting V' = 0 so that I;. = Is. Theoretical maximum power is
Pntfam = V,else, which won’t be obtained due to the I-V characteristic. Realistic maximum power is the area
of the largest rectangle presented in Elliott’s book Fig. 8.82 shown below.
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Figure 3: C-V characteristics under illumination Ig. Maximum power corresponding to the dark square.
Power is obtained by
P =1V = (Ip(expleV/kpT| — 1) — Is) V.

To maximise this we solve when the derivative in respect to V is zero.

oP 0
Vv (Io(expleV/kpT] = 1) = I5) V
eV

= Io(exp[eV/kpT) — 1) — I, + Iy T

expleV/kpT] = 0.

Since Iy < I, we can estimate

Vma:l:
I, ~ Iy expleVinas /k5T) (1 + 6kBT ) .



For open circuit voltage we found that I, = Iy exp[eV,e/kpT] which we can substitute here so that

Iy eXp[eVoc/kBT] =1 eXp[eme/kBT] (1 + evmam)

kT

=4

kT eVimaz

Ve = m(er%ln <1+ T >
4
]{ZBT €Vma1
Vmaz = Voc - —1 1
€ H< * k}BT )

Since logarithm is not that strict to the changes of argument we can do last approximation that

kT eVoe
Vinar & Voe — ——1In | 1 .
(& n( + kBT>

With this maximum voltage we can obtain maximum current by plugging this to the IV-relation

Iz = Io(expleViae /kBT) — 1) — I

Imaac ~ _Is

by assuming that kpT/eVya, < 1. Now we can write maximum power by multiplying obtained voltage and
current

kT eVoe
Pma:v - VmazImaa: - _Is |:Voc - ? lIl (1 + k’BT>:| (8)

Total power is given by

Pr =1V = ISM In <IS)
€ IO

Fill factor is given by

kT eVoe
FF = Prax _ _VOC+87IH(1+/€137T>

P kT I,
" £t (7:)

Lastly the load resistance is defined as

kT eVoe
Viar | Voo = 220 (14 £ )|
Rload = 7 = iy

Negative sign in these equations depends on how charge is defined as can be seen from Fig. 3.
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