
PHYS-E0421 Solid-State Physics (5cr), Spring 2019
Exercise session 5
Model solutions

1. Equilibrium concentration of divacancies

We want to minimize the free enthalpy (Gibbs free energy) of the system, G = U + pV −
TS = H − TS. Its change with respect to a defect-free crystal is

∆G = ∆H − T∆S

= n(∆hf − T∆sf )− TkB∆(lnΩ)

Above, hf is the vacancy pair formation enthalpy, ∆sf is the entropic correction to the
formation free energy due to structural relaxation of atoms Ω the number of different
microstates for the system (for the defected system this is the number of combinations
with n vacancies on Na,c cation and anion sites, for perfect crystal with no vacancies just
1).

Ω =
Nc!

n!(Nc− n)!

Na

n!(Na − n)!
= (

1

n!
)2

Nc!Na!

(Nc − n)!(Na − n)!

lnΩ = ln(Nc)! + ln(Na)− ln(Nc − n)!− ln(Na − n)!− 2 ln(n)!

We simplify the expression using the Stirling’s approximation,

lnx! = x lnx− x, x ≫ 1.

This will give

lnΩ = Nc ln(Nc) +Na ln(Na)− (Nc − n) ln(Nc − n)− (Na − n) ln(Na − n)− 2n ln(n)

We find the extrema by setting the derivative to zero,

∂(∆G)

∂n
= ∆hf − T∆sf − kB

∂(∆ ln(Ω))

∂n
= 0.

Approximating n ≪ Na,c gives the final result

∂(∆ln(Ω))

∂n
=2 ln(n)2 + ln(Ncn) + 1 + ln(Nan) + 1 = ln(

NcNa

n2
),

kBT ln(
NcNa

n2
) = ∆hf − T∆sf

The final result is
n ≈

√
NaNce

−∆hf/2kBT e∆sf/2kBT .
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2. Equilibrium concentration of point defects

From the last page of the exercise sheet: Hv ≈ 1.26 eV and Hi ≈ 3.24 eV (We assume
that ∆V ≈ 0. Then the formation enthalpy is simply the formation energy). The atomic
fractions are calculated using

n

N
= e−Hf/kBT .

For the vacancies we get atomic fractions of 6.8× 10−22 (300 K) and 4.5× 10−7 (1000 K),
and for the interstitials 3.7× 10−55 (300 K) and 4.7× 10−17 (1000 K).

3. Defect diffusion

Diffusion constant D = a2ν, where a is the lattice constant and ν is the jump probability
to nearest neighbor site per unit time. If the random jumps are thermally activated
transitions to the other side of the energy barrier E, we have

ν = ν0e
−E/kT (1)

where ν0 can be interpreted as the jump trial frequency and we get

D = a2ν0e
−E/kT . (2)

We know D at two temperatures from which we can solve the two unknowns, E and ν0:

D1

D2
= e−E/k·(1/T1−1/T2) (3)

⇒ E =
k ln

(
D1
D2

)
1/T2 − 1/T1

= 0.85 eV (4)

and

ν0 =
D1

a2
e−E/kT1 =

D2

a2
e−E/kT2 = 1.48 · 1013 s−1 (5)

4. Defect diffusion, Elliott 3.13

(a) The diffusion equation in 1D is

∂ni

∂t
= Di

∂2ni

∂x2
, (6)

where i indexes different atom types. For the given ansatz

ni(x, t) = n0
i e

−k2Diteikx (7)

we obtain

∂ni(x, t)

∂t
= −k2Din

0
i e

−k2Diteikx = −k2Dini(x, t) (8)

and

Di
∂2ni(x, t)

∂x2
= −k2Din

0
i e

−k2Diteikx = −k2Dini(x, t), (9)

which are equal. Thus, the given ansatz is the solution for the diffusion equation.

Note that since the diffusion equation is a linear equation, a sum of terms each of
which has the form of the general solution above, but different values of k, is also a
solution.

Additionally, note that at time t = 0 the general solution is of form

ni(x, t = 0) = n0
i e

ikx (10)
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(b) Now, the initial distribution is

ni(x, 0) = Niδ(x− x0) =
Ni

2π

∫ ∞

−∞
eik(x−x0)dk. (11)

Note that this of the same form as the general solution in Eq. (10). Here we just have
an integral over different values of k. Thus, by the reasoning above, we can get the
time dependence by using the time dependence of the general solution of Eq. (7)

ni(x, 0) =
Ni

2π

∫ ∞

−∞
e−k2Diteik(x−x0)dk (12)

(one can also subsitute this to the diffusion equation to see that it is fulfilled). Let’s
evaluate the integral

ni(x, 0) =
Ni

2π

∫ ∞

−∞
eik(x−x0)−k2Ditdk (13)

=
Ni

2π

∫ ∞

−∞
e−Dit[k−i(x−x0)/2Dit]

2
e−(x−x0)2/4Ditdk (14)

and make the change of variable y ≡
√
Dit[k − i(x − x0)/2Dit] so that the integral

becomes

ni(x, 0) =
Ni

2π
√
Dit

e−(x−x0)2/4Dit

∫ ∞

−∞
e−y2dy (15)

=
Ni√
4πDit

e−(x−x0)2/4Dit, (16)

since
∫∞
−∞ e−y2dy =

√
π.

(c) The semi-infinite constant-composition initial profile can be represented with the help
of the δ function:

ni(x, 0) =

{
n0
i , x < 0

0, x > 0
= n0

i

∫ 0

−∞
δ(x− x′)dx′. (17)

By using the result of (b), we thus get

ni(x, t) =
n0
i√

4πDit

∫ 0

−∞
e−(x−x′)2/4Ditdx′. (18)

Let’s make a change of variable y ≡ (x− x′)/
√
4Dit, so

ni(x, t) =
n0
i√
π

∫ ∞

x/
√
4Dit

e−y2dy (19)

=
n0
i

2
erfc(x/

√
4Dit), (20)

by the definition of complementary error function erfc.
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