

PHYS-E0421 Solid State Physics Period V, spring 2019

Martti Puska Rina Ibragimova

Hannu-Pekka Komsa Arsalan Hashemi

Lecture 14, Monday 20.5.2019

Dielectric Properties of Solids Magnetism

Magnetic properties

- Response of materials to an external magnetic field
 - Magnetic quantities, magnetism is quantum mechanics (home work)
 - Quantum mechanical description
 - Atomic diamagnetism, paramagnetism (lecture work)
 - Response of free electron gas
- Spontaneous magnetism (Ferromagnetism and antiferromagnetism)
 - Exchange interaction, H₂ molecule, Heisenberg spin Hamiltonian
 - Mean-field approximation for ferromagnetism of magnetic moments
 - Spin waves (low-energy excitations)
 - Free electron gas
 - Stoner model for ferromagnetism of itinerant electrons
 - Antiferromagnetism
 - Domain structure

The last lecture TODAY

Ferromagnetism of Localized Moments, Summary Mean-Field Theory

Ferromagnetism of Localized Moments, Summary

Beyond the Mean-Field Theory, magnons

4

Exchange Hole

Central quantity in electron structure theories

Exchange Hole

Ferromagnetism due to itinerant electrons

(Elliott 7.2.5.3)

→ $J(\uparrow\uparrow)$ strong enough \Rightarrow Ferromagnetism ?

Stoner Band Model of Ferromagnetism

(Elliott 7.2.5.3)

Ni: $\mu_m = 0.56 \ \mu_B$ Fe: $\mu_m = 2.2 \ \mu_B$

- Itinerant electrons "decoupled" from ions
 → μ_m ≠ integer x μ_B
- Quantitative materials parameters directly related to electron bands

Ferromagnetic materials

Substance	Magnetization M_s , in gauss		μ_m	Curie
	Room temperature	0 K	n _B (0 K), per formula unit	temperature, in K
Fe	1707	1740	2.22	1043
Co	1400	1446	1.72	1388
Ni	485	510	0.606	627
Cd		2060	7.63	292
Dv		2920	10.2	88
MnAs	670	870	3.4	318
MnRi	620	680	3.52	630
MnSb	710		3.5	587
CrO.	515		2.03	386
$M_{\rm p} O F_{\rm e} O_{\rm s}$	410		5.0	573
E_2O_3	480		4.1	858
$PEOPE_2O_3$	270	-	2.4	(858)
$\operatorname{NIOPe}_2O_3$	135	_	1.3	728
$M_{\alpha}OF_{2}O_{3}$	110	_	1.1	713
Fund	110	1920	6.8	69
$Y_3Fe_5O_{12}$	130	200	5.0	560

Table 1 Ferromagnetic crystals

Kittel

Stoner Band Model of Ferromagnetism

→ Quantitative criterion for existence of ferromagnetism

Exchange interaction

Lowering of bands is the stronger, the more there are electrons with the same spin

k-independent shifts for bands

 $E_{\uparrow}(\mathbf{k}) = E(\mathbf{k}) - I_{S} n_{\uparrow}$ $E_{\downarrow}(\mathbf{k}) = E(\mathbf{k}) - I_{S} n_{\downarrow}$

$$n_{\uparrow} = \# \text{ of } \uparrow - \text{electrons/atom}$$

 $n_{\downarrow} = \# \text{ of } \downarrow - \text{electrons/atom}$

Stoner parameter

← Strength of exchange interaction

[E(7.239)]

Common energy reference
Excess of
$$\uparrow$$
 -electrons/atom: $\Delta n = n_{\uparrow} - n_{\downarrow}$
Splitting of bands = $I_{S}\Delta n$
 $E_{\uparrow}(\mathbf{k}) = E(\mathbf{k}) - I_{S}(n_{\uparrow} + n_{\downarrow})/2 + I_{S}(n_{\uparrow} + n_{\downarrow})/2 - I_{S}n_{\uparrow} = \tilde{E}(\mathbf{k}) - I_{S}\Delta n/2$
 $\tilde{E}(\mathbf{k}) + I_{S}\Delta n/2$
 $\tilde{E}(\mathbf{k}) + I_{S}\Delta n/2$
 $\tilde{E}(\mathbf{k}) + I_{S}\Delta n/2$
 $\tilde{E}(\mathbf{k}) - I_{S}\Delta n/2$

Stoner criterion of ferromagnetism

Fermi-Dirac statistics \rightarrow Occupation of spin-up and spin-down bands $\rightarrow \Delta n$

[E(7.246)]

Stoner Criterion

Stoner criterion fulfilled due to electron confinement

Flat *E*(**k**) bands

Large DOS(E_F)

 $I_S \overline{g}(E_F) > 1 \implies$ Ferromagnetism

Electron confinement

Examples

- 1) Pd surfaces (2D)
- 2) Atomic chains (1D)
- 3) Zigzag graphene nanoribbons (Nature 514, 608 (2014))

Magnetism

Stoner Model, Temperature Dependence of Magnetization

Stoner Model, Temperature Dependence of Magnetization

Stoner Model, Temperature Dependence of Magnetization

 $B_0 = 0$ $M = M_{\text{max}} \tanh\left(\frac{\theta_{CW}}{T} \frac{M}{M_{\text{max}}}\right)$

As in the mean-field model, but Mf-model: total S of an ion $\rightarrow M$ Stoner model: $\Delta n/atom \rightarrow M$

Comparison with experiments:

 $T < \theta_{CW}$ $M(T) \neq 0$ $T << \theta_{CW} \text{ and } T \approx \theta_{CW} \text{ limits}$ $T > \theta_{CW}$ $\mathbf{B_0} = 0 \rightarrow M = 0$ $\mathbf{B_0} \neq 0 \rightarrow M \neq 0, \quad \chi_m(T) = C/(T - \theta_{CW})$

17

Antiferromagnetism and ferrimagnetism

(Elliott 7.2.5.6)

→ Microscopic origin

E.g. superexchange \rightarrow

Exchange parameter $J_{ii} < 0$

Ferrimagnetism $\mathbf{M} \neq \mathbf{0}$

Examples, Mn, Fe, Co, and Ni –oxides

- band model \rightarrow metals
- electron-electron correlations (Hubbard model) \rightarrow insulator, antiferromagnet

Examples, Ferrites (metal oxides) Intertwined ionic and electronic structures: - Cubic unit cell with metal atoms in 8 tetrahedral (A) and 16 octahedral (B) sites - E.g., Magnetite (lodestone) FeO Fe_2O_3 mixed valence system (Fe²⁺, Fe³⁺)

Ferrimagnetism and antiferromagnetism

➔ Microscopic origin

Example: Ferrimagnetic magnetite (lodestone) FeO Fe₂O₃

https://www.researchgate.net/publication/227992376_Spin_Structures_and_Spin_Wave_Excitations

Ferrimagnetism and antiferromagnetism

➔ Microscopic origin

Example: Ferrimagnetic magnetite (lodestone) FeO Fe₂O₃

Antiferromagnetism

Antiferromagnetism

Ferromagnetic Domains, why do they exist?

Ferromagnetic Domains, Domain Walls

Ferromagnet in an External Field *H*, $T < \theta_{CW}$

Ferromagnet in an External Field *H*, $T < \theta_{CW}$, Hysteresis

Magnetic properties

- Response of materials to an external magnetic field
 - Magnetic quantities, magnetism is quantum mechanics (home work)
 - Quantum mechanical description
 - Atomic diamagnetism, paramagnetism (lecture work)
 - Response of free electron gas
- Spontaneous magnetism (Ferromagnetism and antiferromagnetism)
 - Exchange interaction, H₂ molecule
 - Mean-field approximation for ferromagnetism of magnetic moments
 - Spin waves (low-energy excitations)
 - Free electron gas
 - Stoner model for ferromagnetism of itinerant electrons
 - Antiferromagnetism
 - Domain structure