Prof. Dr. Marcus Greferath

Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University

MS-E1997: Abstract Algebra II Problem Set I

Problem 1: Let G be a group and M be a subset of G.
(a) Show that $\left\{x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \mid n_{i} \in \mathbb{Z}, k \in \mathbb{N}\right.$ and $\left.x_{i} \in M\right\}$ is a subgroup of G.
(b) Show that this subgroup coincides with $\langle M\rangle:=\bigcap\{U \leq G \mid M \subseteq U\}$.

Work: (a) We first observe that, regardless of the set M being empty or not, the set $X:=\left\{x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \mid n_{i} \in \mathbb{Z}, k \in \mathbb{N}\right.$ and $\left.x_{i} \in M\right\}$ is non-empty because it contains (at least) the empty product which evaluates to 1 . Furthermore this set is closed under multiplication because the result of a multiplication is just a concatenation of the strings that we see in X. For the existence of inverses observe that $\left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1}=x_{k}^{-n_{k}} \ldots x_{1}^{-n_{1}}$ and, as this is again of the form of the elements in X we see that X is closed under inversion. All in all we have proven X to be a subgroup of G.
For (b) we use that X is certainly a subgroup that contains M. Hence, it is one of the subgroups occuring in the definition of $\langle M\rangle$, and this shows that $X \geq\langle M\rangle$. On the other hand, every subgroup of G that contains M must also contain all products of powers of elements in M, and thus X. Since $\langle M\rangle$ contains M we therefore see that $\langle M\rangle \geq X$, which concludes the proof of equality.

Problem 2: Let $A_{1}, A_{2}, B_{1}, B_{2}$ be normal subgroups of a group G with $B_{1} \leq A_{1}$ and $B_{2} \leq A_{2}$ and finally $A_{1} \cap A_{2}=\{e\}$. Then $B_{1} B_{2}$ is normal subgroup in $A_{1} A_{2}$ and there holds

$$
\left(A_{1} A_{2}\right) /\left(B_{1} B_{2}\right) \cong\left(A_{1} / B_{1}\right) \oplus\left(A_{2} / B_{2}\right)
$$

Work: We consider the mapping

$$
\varphi: A_{1} \oplus A_{2} \longrightarrow A_{1} / B_{1} \oplus A_{2} / B_{2}, \quad a_{1} a_{2} \mapsto\left(a_{1} B_{1}, a_{2} B_{2}\right) .
$$

For each $g \in A_{1} A_{2}$ there are unique $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ such that $g=a_{1} a_{2}$. Therefore this mapping is well-defined. Moreover, as A_{1} and A_{2} are normal with trivial intersection, we have $a_{1} a_{2}=a_{2} a_{1}$ for all $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$, and for this reason we will find that φ is a homomorphism. Indeed, if $g=a_{1} a_{2}$ and $h=a_{1}^{\prime} a_{2}^{\prime}$ then

$$
\begin{aligned}
\varphi(g h) & =\varphi\left(a_{1} a_{2} a_{1}^{\prime} a_{2}^{\prime}\right)=\varphi\left(a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime}\right) \\
& =\left(a_{1} a_{1}^{\prime} B_{1}, a_{2} a_{2}^{\prime} B_{2}\right)=\left(a_{1} B_{1}, a_{2} B_{2}\right) \cdot\left(a_{1}^{\prime} B_{1}, a_{2}^{\prime} B_{2}\right) \\
& =\varphi(g) \varphi(h)
\end{aligned}
$$

The homomorphism φ is even onto because for arbitrary $\left(a_{1} B_{1}, a_{2} B_{2}\right)$ we find the preimage $a_{1} a_{2}$ under φ. For the kernel we see that

$$
\operatorname{ker} \varphi=\left\{a_{1} a_{2} \in A_{1} \oplus A_{2} \mid a_{1} B_{1}=B_{1} \text { and } a_{2} B_{2}=B_{2}\right\}=B_{1} \oplus B_{2},
$$

and by this observation we obtain our claim by application of the homomorphism theorem.

Problem 3: If G is a free Abelian group of ranks r and s, then $r=s$. Prove this in the following way: Let $\varphi: \mathbb{Z}^{r} \longrightarrow \mathbb{Z}^{s}$ be an isomorphism, and let α and β be the natural embeddings of \mathbb{Z}^{r} (resp. \mathbb{Z}^{s}) into the respective direct sums of copies of \mathbb{Q}.
(a) Show that for every $x \in \mathbb{Q}^{n}$ there exists $z \in \mathbb{Z}$ such that $z x \in \mathbb{Z}^{n}$.
(b) Define $\bar{\varphi}: \mathbb{Q}^{r} \longrightarrow \mathbb{Q}^{s}$ by $x \mapsto \frac{1}{z} \varphi(z x)$ where z is the number that you found in (a). Show that this mapping is well-defined.
(c) Show that $\bar{\varphi}$ is additive and (hence) \mathbb{Z}-linear; then show that $\bar{\varphi}$ is \mathbb{Q}-linear.
(d) Show that $\bar{\varphi}$ is one-to-one, and draw your final conclusion by symmetry.

Proof: (a) This claim is immediate because the entries in x have a common denominator, and using z to be this denominator we have $x=\frac{1}{z} z x$ where $z x \in \mathbb{Z}^{n}$.
(b) We have to show first that this definition does not depend on the choice of z. For $z, z^{\prime} \in \mathbb{Z}$ we compute

$$
\begin{aligned}
\frac{1}{z} \varphi(z x)-\frac{1}{z^{\prime}} \varphi\left(z^{\prime} x\right) & =\frac{1}{z z^{\prime}}\left(z^{\prime} \varphi(z x)-z \varphi\left(z^{\prime} x\right)\right) \\
& =\frac{1}{z z^{\prime}}\left(\varphi\left(z^{\prime} z x\right)-\varphi\left(z z^{\prime} x\right)\right)=0,
\end{aligned}
$$

and this shows that $\bar{\varphi}$ is well-defined.
(c) For $x, y \in \mathbb{Q}^{r}$ there exists $z \in \mathbb{Z}$ such that $z x \in \mathbb{Z}^{r}$ and $z y \in \mathbb{Z}^{r}$, and certainly $z(x+y) \in \mathbb{Z}$. For this reason we find

$$
\bar{\varphi}(x+y)=\frac{1}{z} \varphi(z(x+y))=\frac{1}{z} \varphi(z x)+\frac{1}{z} \varphi(z y)=\bar{\varphi}(x)+\bar{\varphi}(y)
$$

which shows that $\bar{\varphi}$ is additive and (hence) \mathbb{Z}-linear. For the \mathbb{Q}-linearity we consider $x \in \mathbb{Q}^{r}$ and $q \in \mathbb{Q}$. Then there exists $a, b \in \mathbb{Z}$ with $a q \in \mathbb{Z}$ and $b x \in \mathbb{Z}^{r}$. We then compute

$$
\begin{aligned}
\bar{\varphi}(q x) & =\frac{1}{a b} \varphi(a q b x)=\frac{1}{a b} a q \varphi(b x) \\
& =q \frac{1}{b} \varphi(b x)=q \bar{\varphi}(b x),
\end{aligned}
$$

and hence we have \mathbb{Q}-linearity.
(d) If $x, y \in \mathbb{Q}^{r}$ with $\bar{\varphi}(x)=\bar{\varphi}(y)$ then we find $z \in \mathbb{Z}$ with $z x \in \mathbb{Z}^{r}$ and $z y \in \mathbb{Z}^{r}$. Like in the (a) part we compute

$$
0=\bar{\varphi}(x)-\bar{\varphi}(y)=\frac{1}{z} \varphi(z x)-\frac{1}{z} \varphi(z y)=\frac{1}{z} \varphi(z(x-y))
$$

which shows that $\varphi(z(x-y))=0$ and by injectivity of φ also $z(x-y)=0$. From this, however we find $x-y=0$ and this shows the claim. For surjectivity let $y \in \mathbb{Q}^{s}$ be given. Then there exists $z \in \mathbb{Z}$ with $z y \in \mathbb{Z}^{s}$ and we consider the element $x:=\frac{1}{z} \varphi^{-1}(z y) \in \mathbb{Q}^{r}$. For this element we certainly have

$$
\bar{\varphi}(x)=\frac{1}{z} \bar{\varphi} \varphi^{-1}(z y)=\frac{1}{z} \varphi \varphi^{-1}(z y)=\frac{1}{z} z y=y
$$

and this finishes our work.

Problem 4: Determine all Abelian groups of order 9000.

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.

