Spring 2019

MS-E1997: Abstract Algebra II Problem Set I

Problem 1: Let G be a group and M be a subset of G.

- (a) Show that $\{x_1^{n_1} \dots x_k^{n_k} \mid n_i \in \mathbb{Z}, k \in \mathbb{N} \text{ and } x_i \in M\}$ is a subgroup of G.
- (b) Show that this subgroup coincides with $\langle M \rangle := \bigcap \{U \leq G \mid M \subseteq U\}$.

<u>Work:</u> (a) We first observe that, regardless of the set M being empty or not, the set $X:=\{x_1^{n_1}\dots x_k^{n_k}\mid n_i\in\mathbb{Z},\ k\in\mathbb{N}\ \text{and}\ x_i\in M\}$ is non-empty because it contains (at least) the empty product which evaluates to 1. Furthermore this set is closed under multiplication because the result of a multiplication is just a concatenation of the strings that we see in X. For the existence of inverses observe that $(x_1^{n_1}\dots x_k^{n_k})^{-1}=x_k^{-n_k}\dots x_1^{-n_1}$ and, as this is again of the form of the elements in X we see that X is closed under inversion. All in all we have proven X to be a subgroup of G.

For **(b)** we use that X is certainly a subgroup that contains M. Hence, it is one of the subgroups occurring in the definition of $\langle M \rangle$, and this shows that $X \geq \langle M \rangle$. On the other hand, every subgroup of G that contains M must also contain all products of powers of elements in M, and thus X. Since $\langle M \rangle$ contains M we therefore see that $\langle M \rangle \geq X$, which concludes the proof of equality.

Problem 2: Let A_1, A_2, B_1, B_2 be normal subgroups of a group G with $B_1 \leq A_1$ and $B_2 \leq A_2$ and finally $A_1 \cap A_2 = \{e\}$. Then B_1B_2 is normal subgroup in A_1A_2 and there holds

$$(A_1A_2)/(B_1B_2) \cong (A_1/B_1) \oplus (A_2/B_2).$$

Work: We consider the mapping

$$\varphi: A_1 \oplus A_2 \longrightarrow A_1/B_1 \oplus A_2/B_2, \quad a_1a_2 \mapsto (a_1B_1, a_2B_2).$$

For each $g \in A_1A_2$ there are unique $a_1 \in A_1$ and $a_2 \in A_2$ such that $g = a_1a_2$. Therefore this mapping is well-defined. Moreover, as A_1 and A_2 are normal with trivial intersection, we have $a_1a_2 = a_2a_1$ for all $a_1 \in A_1$ and $a_2 \in A_2$, and for this reason we will find that φ is a homomorphism. Indeed, if $g = a_1a_2$ and $h = a'_1a'_2$ then

$$\varphi(gh) = \varphi(a_1 a_2 a_1' a_2') = \varphi(a_1 a_1' a_2 a_2')
= (a_1 a_1' B_1, a_2 a_2' B_2) = (a_1 B_1, a_2 B_2) \cdot (a_1' B_1, a_2' B_2)
= \varphi(g) \varphi(h)$$

The homomorphism φ is even onto because for arbitrary (a_1B_1, a_2B_2) we find the preimage a_1a_2 under φ . For the kernel we see that

$$\ker \varphi = \{a_1 a_2 \in A_1 \oplus A_2 \mid a_1 B_1 = B_1 \text{ and } a_2 B_2 = B_2\} = B_1 \oplus B_2,$$

and by this observation we obtain our claim by application of the homomorphism theorem.

Problem 3: If G is a free Abelian group of ranks r and s, then r = s. Prove this in the following way: Let $\varphi : \mathbb{Z}^r \longrightarrow \mathbb{Z}^s$ be an isomorphism, and let α and β be the natural embeddings of \mathbb{Z}^r (resp. \mathbb{Z}^s) into the respective direct sums of copies of \mathbb{Q} .

- (a) Show that for every $x \in \mathbb{Q}^n$ there exists $z \in \mathbb{Z}$ such that $zx \in \mathbb{Z}^n$.
- (b) Define $\overline{\varphi}: \mathbb{Q}^r \longrightarrow \mathbb{Q}^s$ by $x \mapsto \frac{1}{z} \varphi(zx)$ where z is the number that you found in (a). Show that this mapping is well-defined.
- (c) Show that $\overline{\varphi}$ is additive and (hence) \mathbb{Z} -linear; then show that $\overline{\varphi}$ is \mathbb{Q} -linear.
- (d) Show that $\overline{\varphi}$ is one-to-one, and draw your final conclusion by symmetry.

<u>Proof:</u> (a) This claim is immediate because the entries in x have a common denominator, and using z to be this denominator we have $x = \frac{1}{z}zx$ where $zx \in \mathbb{Z}^n$.

(b) We have to show first that this definition does not depend on the choice of z. For $z, z' \in \mathbb{Z}$ we compute

$$\frac{1}{z}\varphi(zx) - \frac{1}{z'}\varphi(z'x) = \frac{1}{zz'}(z'\varphi(zx) - z\varphi(z'x))$$

$$= \frac{1}{zz'}(\varphi(z'zx) - \varphi(zz'x)) = 0,$$

and this shows that $\overline{\varphi}$ is well-defined.

(c) For $x, y \in \mathbb{Q}^r$ there exists $z \in \mathbb{Z}$ such that $zx \in \mathbb{Z}^r$ and $zy \in \mathbb{Z}^r$, and certainly $z(x+y) \in \mathbb{Z}$. For this reason we find

$$\overline{\varphi}(x+y) = \frac{1}{z}\varphi(z(x+y)) = \frac{1}{z}\varphi(zx) + \frac{1}{z}\varphi(zy) = \overline{\varphi}(x) + \overline{\varphi}(y),$$

which shows that $\overline{\varphi}$ is additive and (hence) \mathbb{Z} -linear. For the \mathbb{Q} -linearity we consider $x \in \mathbb{Q}^r$ and $q \in \mathbb{Q}$. Then there exists $a, b \in \mathbb{Z}$ with $aq \in \mathbb{Z}$ and $bx \in \mathbb{Z}^r$. We then compute

$$\begin{array}{rcl} \overline{\varphi}(qx) & = & \displaystyle \frac{1}{ab}\varphi(aqbx) \ = & \displaystyle \frac{1}{ab}aq\varphi(bx) \\ & = & \displaystyle q\frac{1}{b}\varphi(bx) \ = & \displaystyle q\overline{\varphi}(bx), \end{array}$$

and hence we have \mathbb{Q} -linearity.

(d) If $x, y \in \mathbb{Q}^r$ with $\overline{\varphi}(x) = \overline{\varphi}(y)$ then we find $z \in \mathbb{Z}$ with $zx \in \mathbb{Z}^r$ and $zy \in \mathbb{Z}^r$. Like in the (a) part we compute

$$0 = \overline{\varphi}(x) - \overline{\varphi}(y) = \frac{1}{z}\varphi(zx) - \frac{1}{z}\varphi(zy) = \frac{1}{z}\varphi(z(x-y))$$

which shows that $\varphi(z(x-y))=0$ and by injectivity of φ also z(x-y)=0. From this, however we find x-y=0 and this shows the claim. For surjectivity let $y\in\mathbb{Q}^s$ be given. Then there exists $z\in\mathbb{Z}$ with $zy\in\mathbb{Z}^s$ and we consider the element $x:=\frac{1}{z}\varphi^{-1}(zy)\in\mathbb{Q}^r$. For this element we certainly have

$$\overline{\varphi}(x) \; = \; \frac{1}{z} \overline{\varphi} \varphi^{-1}(zy) \; = \; \frac{1}{z} \varphi \varphi^{-1}(zy) \; = \; \frac{1}{z} zy \; = \; y,$$

and this finishes our work.

Problem 4: Determine all Abelian groups of order 9000.

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.