MS-E1997: Abstract Algebra II

Problem Set II

Problem 1:

(a) Consider the action of S_{3} on itself by conjugation: $g x:=g x g^{1}$. Describe the orbits of (12) and (123) under this action. How many orbits are there in total in S_{3} ? Find the stabilizer of each of the elements above.
(b) Consider the action of S_{4} on itself by conjugation: $g x:=g x g^{1}$. Describe the orbits of (12), (123), and (12)(34) under this action. How many orbits are there in total in S_{4} ? Find the stabilizer of each of the elements above.

Problem 2:

(a) Determine all Sylow subgroups of the symmetric group S_{3} and of $\mathbb{Z} / 4900 \mathbb{Z}$.
(b) Let G be a group of order 12. Determine the possible values of s_{2} and s_{3} the 2 - and 3 -Sylow subgroups of G. Show that from $s_{3}=4$ there follows $s_{2}=1$, and that if $s_{2}=1=s_{3}$ the group G is abelian.
(c) Let G be a finite group and H a normal subgroup of G. Show that the p-Sylow subgroups of H are exactly the intersections of p-Sylow subgroups of G with H.

Work: (a) $\left|S_{3}\right|=3!=6$ and hence we expect p-Sylow subgroups for $p=2$ and $p=3$. Knowing $s_{3} \mid 6$ and $s_{3} \equiv 1(\bmod 3)$ the only value for s_{3} is 1 and the corresponding subgroup is given by $\{\mathrm{id},(123),(321)\}$. The remaining elements of S_{3} are (12), (13), (23) and these give rise to the 2 -Sylow subgroups $\{\mathrm{id},(12)\},\{\mathrm{id},(13)\}$ and $\{\mathrm{id},(23)\}$. The group \mathbb{Z}_{4900} is abelian, and for this reason $s_{2}=s_{5}=$ $s_{7}=1$. From the main theorem characterizing finitely generated abelian groups we further know that the Sylow subgoups are isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{25}$, and \mathbb{Z}_{49}, respectively.
(b) $s_{2} \equiv 1(\bmod 2)$ and $s_{2} \mid 12$ yields $s_{2} \in\{1,3\}$ and similarly we get $s_{3} \in\{1,4\}$. If $s_{3}=4$ then these 4 different 3 -Sylow subgroups cover 9 elements of G. The remaining 3 elements together with the identity fit in exactly one 2 -Sylow subgroup of order 4 , and this proves the claim. If now $s_{2}=1=s_{3}$ then the corresponding Sylow subgroups U_{2} and U_{3} are normal in G and intersect only trivially. This yields already $G=U_{2} U_{3}$ where the elements of U_{2} and U_{3} commute with each other by 1.17 (e). Both subgroups U_{2} and U_{3} are abelian, because this is trivially true for $U_{3} \cong \mathbb{Z}_{3}$ and because we can easily check that a U_{2} as a 4 -element group must be abelian. From all we get that G is abelian.
(c) If Q is a p-Sylow subgroup of H then by Sylow' theorems we have a p-Sylow subgroup P of G with $Q \leq P$. Then we have $Q:=Q \cap H \leq P \cap H$ where the latter is a p-subgroup of H. As Q is a maximal p-subgroup of H we have $Q=P \cap H$.
Let on the other hand P be a p-Sylow subgroup of G and consider $Q:=P \cap H$. Then Q is a p-subgroup of H which is contained in a p-Sylow subgroup Q^{\prime} of H by Sylow's first theorem. Applying Sylow's second theorem we find $g \in G$ such that $g Q^{\prime} g^{-1} \leq P$, and as H is normal even $g Q^{\prime} g^{-1} \leq P \cap H=Q$. Hence $\left|Q^{\prime}\right| \leq|Q|$ showing that Q is already a Sylow subgroup of H.

Problem 3:

(a) For prime numbers p, q with $p \geq q$ and arbitrary $r \in \mathbb{N}$ every group of order $p^{r} q$ is solvable.
(b) Every group of order 100 is solvable.

Work: (a) If $p=q$ then the claim is true because every p-group is solvable. Assume therefore $p>q$, then we have p-Sylow subgroups of order p^{r} and q-Sylow subgroups of order q in G. We try to prove that $s_{p}=1$, meaning that we have a unique and normal p-Sylow subgroup U_{p} in G. Then G / U_{p} is solvable as a q-group and U_{p} is solvable as a p-group which yields G to be solvable according to proposition 1.67. The possible values of s_{p} are $\left\{1, q, p, \ldots, p^{r}, p q, \ldots, p^{r} q\right\}$. The assumption that $s_{p} \equiv 1(\bmod p)$ reduces these possibilities to $\{1, q\}$ and as $2 \leq q<p$, we find that $s_{p}=1$, as claimed.
(b) We expect 2 -Sylow subgroups of order 4 and 5 -Sylow subgroups of order 25 . For s_{5} we have the possibilities $\{1,2,4,5,10,20,25,50,100\}$ from which all but the first are removed by the condition $s_{5} \equiv 1$ $(\bmod 5)$. Hence, we have a unique normal 5 -Sylow subgroup U_{5} and again G / U_{5} is solvable because of being a 2 -group and U_{5} is solvable because of being a 5 -group. This shows the result again by application of proposition 1.68.

Problem 4: Let G be a group. For $a, b \in G$ define the commutator $[a, b]:=a b a^{-1} b^{-1}$ of a and b. For arbitrary subgroups U, V of G define $[U, V]:=\langle[u, v] \mid u \in U, v \in V\rangle$. Now show the following:
(a) If U, V are normal subgroups of G, then so is $[U, V]$.
(b) $[G, G]$ is the smallest normal subgroup of G for which the factor group is abelian.
(c) Setting $G^{(0)}:=G$ und $G^{(i)}:=\left[G^{(i-1)}, G^{(i-1)}\right]$ for all $i \in \mathbb{N}$, we find that G is solvable if and only if there exists $n \in \mathbb{N}$ such that $G^{(n)}=\{e\}$.
(d) For $n \geq 5$ let U be a subgroup of S_{n} and N a normal subgroup of U for which U / N is abelian. Show that if U contains all 3 -cycles of S_{n}, then also N will contain these.
Hint: If $u, v, w, x, y \in\{1, \ldots, n\}$ are distinct elements, then there holds the equation

$$
(u, v, w)=(u, v, x)(w, y, u)(x, v, u)(u, y, w)
$$

(e) Show that this implies that the symmetric group S_{n} is not solvable for $n \geq 5$.

Work: (a) It is easily verified for an arbitrary subset M of a group G that $\langle M\rangle$ is normal in G if and only if $g M g^{-1} \subseteq\langle M\rangle$. In the current context M can just be chosen to be the set of commutators $\{[u, v] \mid u \in U, v \in V\}$. For each of these commutators we find $g[u, v] g^{-1}=\left[g u g^{-1}, g v g^{-1}\right]$ and as U and V are normal, we now even have $g M g^{-1} \subseteq M$. This proves the claim.
(b) We have just seen that $[G, G]$ is normal in G. The quotient group $G /[G, G]$ is abelian, since $g h=$ [$g, h] h g$ for all $g, h \in G$. If now H is a normal subgroup of G with G / H being abelian, then we have $x y H=y x H$ for all $x, y \in G$ which can be equivalently written as $[x, y] H=H$, for all $x, y \in G$. This however shows that H contains a generator of $[G, G]$ and hence $[G, G]$ itself.
(c) If this commutator series terminates at $\{e\}$ then clearly we have a solvable group by definition. If on the other hand G is solvable, then we have a normal series $G=H_{0} \geq H_{1} \geq \ldots \geq H_{n}=\{1\}$, and first observe $G=G^{(0)} \subseteq H_{0}$. We show that $G^{(i)} \subseteq H_{i}$ for all $i=0, \ldots, n$, by which then commutator series will then terminate in $\{1\}$. This follows by induction considering that $G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right] \subseteq\left[H_{i}, H_{i}\right] \subseteq H_{i+1}$ because H_{i} / H_{i+1} being abelian implies that $\left[H_{i}, H_{i}\right] \subseteq H_{i+1}$.
(d) According to the hint every 3 -cycle of S_{n} is a commutator provided $n \geq 5$ (otherwise we have not enough space, as one could say). If now U contains all 3 -cycles of S_{n} then also $[U, U]$ will contain them. If then N is normal in U with U / N abelian, then $[U, U] \leq N$ as we have seen before, and hence N contains all 3 -cycles. This shows the claim.
(e) If S_{n} were solvable then we would have a normal series $S_{n}=H_{0} \geq H_{1} \geq \ldots \geq H_{k}=\{$ id $\}$ for some $k \in \mathbb{N}$. Clearly S_{n} contains all 3 -cycles of S_{n}, and using our claim in (d) we inductively see that if H_{i} contains all 3 -cycles then H_{i+1} must contain those for all $i=0, \ldots, k-1$. This however will finally contradict the fact that $H_{k}=\{\mathrm{id}\}$, and thus shows that S_{n} cannot be solvable for all $n \geq \mathbb{N}$.

You are encouraged to collaborate in preparing solutions, however, please submit individual write-ups.

