Designing genetic circuits using Cello

Alexander Henn, Lauri Huitula, Tuula Tenkanen

What is Cello

- A program that automatically generates and designs genetic circuits depending on user's inputs and outputs
- The algorithm designs circuits using NOT and NOR logic gates
- Inputs are inducible promoters and output is the wanted product proteins
- There are currently only a few options for inputs and outputs
- The algorithm also analyzes toxicity of the product production and of the inducible and repressible signals
- The complete plasmid is included as output and can be copied as text or downloaded in sbol or ape format

Simple circuit

Verilog choose • 1 module A(output out1, input in1, in2, in3); always@(in1, in2, in3) 2 3 begin case({in1,in2,in3}) 4 5 3'b000: {out1} = 1'b0; 6 3'b001: {out1} = 1'b0; 3'b010: {out1} = 1'b0; 7 8 3'b011: {out1} = 1'b0; 9 3'b100: {out1} = 1'b0; 3'b101: {out1} = 1'b1; 10 11 3'b110: {out1} = 1'b1; 12 3'b111: {out1} = 1'b1; 13 endcase 14 end 15 endmodule

choose	•	clear				
index	name		low RPU	high RPU	DNA sequence	
1	рТас		0,0034	2,8	AACGATCGTTGGCTGTGTTGACAATTAAT	
2	pBAD		0,0082	2,5	ACTTTTCATACTCCCGCCATTCAGAGAAC	
3	pTet		0,0013	4,4	TACTCCACCGTTGGCTTTTTTCCCTATCA	
outputs	•	clear				
choose	•	clear				
index	name		DNA sequence			
1	YFP		CTGAAGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACG.			

Simple circuit

How the circuit work

Three inducible promoters are used. pTet induced by TetR , pTac induced by Lacl and pBAD induced by AraC.

If pTet is on, SrpR is produced. If either pTac or pBAD is on H1yIIR is produced. SrpR and H1yIIR are repressors of pSrpR and pH1yIIR. Therefore Ph1F2 is produced only if there is no SrpR or H1yIIR. Ph1F2 is a repressor of the pomoter pPh1F2 and therefore YFP is produced only if Ph1F2 is not produced.

As a result YFP is produced only if all of the promoters are on, if both pTac and pTet is on or if both pTac and pBAD is on.

Complex circuit

~ Verilog choose module A(output out1, input in1, in2, in3); always@(in1, in2, in3) begin 4 case({in1, in2, in3}) 3'b000: {out1} = 1'b0; 6 3'b001: {out1} = 1'b1; 3'b010: {out1} = 1'b1; 8 3'b011: {out1} = 1'b1; 9 3'b100: {out1} = 1'b0; 3'b101: {out1} = 1'b0; 3'b110: {out1} = 1'b0; 3'b111: {out1} = 1'b1; endcase 14 end 15 endmodule 16

choose	~ cle	ar					
ndex	name	low RPU	high RPU	DNA sequence			
1	pTet	0.0013	4.4	TACTCCACCGTTGGCTTTTTTCCCTATCA			
2	pBAD	0.0082	2.5	ACTTTTCATACTCCCGCCATTCAGAGAA			
3	pTac	0.0034	2.8	AACGATCGTTGGCTGTGTTGACAATTAA			
utputs choose	cle	ear					
ndex	name	DNA sequen	DNA sequence				

Complex circuit

Complex circuit

Implementing the design in cells

Cello gives the sequence information needed for plasmid construction.

Two plasmids has to be done. One with the circuit and another with the output.

The sequences that cello is giving are inserted to *E. coli* plasmids with a selection marker. Then the plasmids are inserted to *E.coli*.

Sources

Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science. 2016 Apr 1;352(6281):aac7341. doi: 10.1126/science.aac7341.