FiTech Summer Boost 2019

Additive Manufacturing and 3D-Printing

2019!

3rd lecture: Redes	ign of components	
12Intro		Jouni Partanen
12:102nd	miniseminar: showing 3D prints	
12:403D s	canning	Jan Akmal
13:05Topo	ology optimation	Mika Salmi
13:30Desi	gn Rules for metal AM	Heidi Piili LUT
14:00Brea	k	
14:15 of Be	Support appointment:Selection est idea	
14:45 Discu	ussion and plan for next re, homework assignment	Jouni Partanen

Teaching Staff

Dr. Heidi Piili Docent LUT

Sergei Chekurov
Post Doc
Siddharth Jayaprakash
Niklas Kretzschmar
Tuomas Puttonen
PhD Students
Aalto university

Jan Akmal PhD Student Aalto University

Dr. Mika Salmi Staff Scientist Aalto University

Pekka Törnqvist Laboratory Manager Turku AMK

Teaching staff for the course

- Aalto University, ENG, SCI, BIS
- Lappeenranta University of Technology
- Tampere University
- University of Oulu
- University of Vaasa

Shark Tank

- EOS Finland
- Nokia, DIMECC
- · Benefon, Business Finland

Course Structure

05/2019

The first part of the course presents widely AM and 3D printing technologies and design aspects that are deepen by weekly group assignments. The assignments are presented before next week lecture in a miniseminar.

- 5 x 3 h lectures
- 4 x weekly group assignments
- · 4 x miniseminars before the lecture

06-07/2019

In the second part, students will run a project in AM.

- Project: groups of five identify the problem, innovate AM solution, design AM model and print AM prototypes.
- Lecturers direct and support the project development in 3–5 appointments in Turku.
- Groups select one person, five in total, to take part in Nottingham conference (www.additiveinternational.com/about/).

08/2019

Third part is for dissemination of project results.

- Groups evaluate group activity
- Groups present their project in a "Shark Tank" 16th of August 2019

Schedule: WEEK	М	Weekly events
Fri 17th		1st lecture: Introduction to AM and 3D printing
		Project assignment
Fri 24th	MAY	2nd lecture: Concept creation and Design
wed 29th		3rd lecture: Redesign of components
		1st support appointment
Fri 7th		4th lecture: Business opportunities and IPR
Fri 14th	JUNE	5th lecture: 3D printing clinic
Tue 25th	_	2nd support appointment
Fri 5th		3rd support appointment
Fri 19th		4th support appointment
Fri 2nd	IJ	5th support appointment
	AU	3D printing of final parts
Fri 16		"Shark Tank"

https://www.additiveinternational.com/about/

9TH - 11TH JULY, 2019 BELFRY HOTEL, NOTTINGHAM UK

Assessment Methods and Criteria:

Weekly activity in lectures: weight 10%, scale 1-5

Grade from home assignments: weight 30%, scale 1-5

Grade from final Project: weight 60%, scale 1-5

Thank you!

Jouni Partanen

Aalto University

Dept of Mechanical Engineering

jouni.partanen@aalto.fi, tel. +358 50 576 9804

