
MEC-E8001 Finite Element Analysis, Exam 29.05.2019

1. Consider a bar of length L loaded  by  its  own weight  (figure).  Determine
the displacement 2Xu  at the free end. Start with the virtual work density
expression ( / ) ( / ) xw d u dx EA du dx ufχ χ χς < , ∗  and approximation

1 2(1 / ) ( / )x xu x L u x L u< , ∗ . Cross-sectional area A, acceleration by
gravity g, and material properties E and θ are constants.

2.  The XZ-plane structure shown consists of two mass-
less beams and a homogeneous disk considered as a
rigid body. Derive the equations of motion in terms of
displacements 2Zu  and 2Yπ . Young’s modulus of the
beam material and the second moment of area are E
and I , and the mass and moment of inertia of the disk
are m and J , respectively.

3.  Determine the critical value of the in-plane loading

crp  making  the  plate  of  the  figure  to  buckle.  The
loaded edges are simply supported and the unload-
ed free. Use the approximation

0( , ) (1 / )( / )w x y a x L x L< ,  and assume that

xxN p< ,  and 0yy xyN N< < . Problem parame-
ters E, µ , ρ and t are constants.

4.  Determine the displacement at node 2 of the elastic bar
shown by the large deformation theory. Take into ac-
count only the transverse displacement 2Yu  ( 2 0Xu < ).
When 0F < , the cross-sectional area and length of the
bar are A  and L , respectively. Constitutive equation of
the material is xx xxS CE< , in which C is constant. Use
two elements with linear shape functions.

5. A  thin  triangular  slab  (assume  plane  stress  conditions)
loaded by a horizontal force is allowed to move horizon-
tally  at  node  1  and  nodes  2  and  3  are  fixed.  At  the  con-
stant initial temperature Ι↓  and loading 0F < , stress
vanishes. If the slab is heated to the constant temperature
2Ι↓ , what is the required force F  to have 1 0Xu < ? Ma-
terial properties E , µ ,   and thickness t  of the slab are
constants.
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement  at  the  free  end.  Start  with  the  virtual  work  density  ex-
pression ( / ) ( / ) xw d u dx EA du dx ufχ χ χς < , ∗  and approximation

. Cross-sectional area A, acceleration by gravi-
ty g, and material properties E and θ are constants.

Solution
The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are just substi-
tuted into the density expression followed by integration over the domain occupied by the element
(line segment, triangle etc.). Here the two building blocks are

x
d u duw EA uf
dx dx
χχ χς < , ∗   and 1 2(1 ) x x

x xu u u
L L

< , ∗ .

2p The quantities needed in the virtual work density are the axial displacement, variation of the axi-
al displacement, and variation of the derivative of the axial displacement
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2p When the approximation is substituted there, virtual work density expression of the bar model
takes the form
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Finally, integration over the element gives the virtual work expression of the bar element
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2p Finding the displacement of the free end follows the usual lines. Here, ,
, and
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One may start also from approximation which takes into account the boundary condition and solve
the problem with steps
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The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid
body. Derive the equations of motion in terms of dis-
placements 2Zu  and 2Yπ . Young’s modulus of the beam
material and the second moment of area are E and I , and
the mass and moment of inertia of the disk are m and J ,
respectively.

Solution
4p The non-zero displacement/rotation components of the structure are 2Zu  and 2Yπ . Let us start
with the element contributions. Since the beam is assumed to be massless, only the virtual work ex-
pressions of the internal forces (available in the formulae collection) is needed.
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Element contribution of the rigid body (formulae collection) simplifies to
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2p Virtual work expression of structure is the sum of element contributions.
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Finally,  principle  of  virtual  work  and  the  fundamental  lemma of  variation  calculus  imply  a  set  of
ordinary differential equations:
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Determine the critical value of the in-plane loading crp
making the plate of the figure to buckle. The loaded
edges are simply supported and the unloaded free. Use
the approximation 0( , ) (1 / )( / )w x y a x L x L< ,  and as-
sume that xxN p< ,  and 0yy xyN N< < . Problem pa-
rameters E, µ , ρ and t are constants.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab
modes decouple in the linear analysis and that the in-plane stress resultants are known (from linear
displacement analysis, say), it is enough to consider the virtual work densities of plate bending
mode and the coupling of the bending and thin-slab modes
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2

1 0
[ ] 1 0

1 0 0 (1 ) / 2

EE ρ

µ
µ

µ µ

 
 <  , ,  

.

1p Approximation to the transverse displacement and its non-zero derivatives in the density expres-
sions are given by
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3p When the approximation is substituted there, virtual work density of the internal forces and that
of the coupling simplify to (substitute also the known solution xxN p< ,  and 0yy xyN N< <  to the
in-plane stress resultants)
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Virtual work expressions are integrals of the densities over the domain occupied by the plate
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2p Virtual work expression
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Determine  the  displacement  at  node  2  of  the  elastic  bar
shown by the large deformation theory. Take into account
only the transverse displacement 2Yu  ( 2 0Xu < ). When

0F < , the cross-sectional area and length of the bar are A
and L , respectively. Constitutive equation of the material
is xx xxS CE< , in which C is constant. Use two elements
with linear shape functions.

Solution
Virtual work density of the non-linear bar model
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is  based  on  the  Green-Lagrange  strain  definition  which  is  physically  correct  also  when  rota-
tions/displacements are large. The expression depends on all displacement components, material
property is denoted by (constitutive equation xx xxS CE< ), and the superscript in the cross-
sectional area A↓  (and in other quantities) refers to the initial geometry (strain and stress vanishes).
Otherwise, equilibrium equations follow in the same manner as in the linear case.

2p For element 1, the non-zero displacement components is 2 2y Yu u< . As the initial length of the
element h L↓ < , linear approximations to the displacement components
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When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to
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2p For element 2, the non-zero displacement component 2 2y Yu u< . As the initial length of the el-
ement h L↓ < , linear approximations to the displacement components
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When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplifies to
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2p Virtual work expression of the point force is
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Virtual work expression of the structure is obtained as the sum of the element contributions
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A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force is allowed to move horizontally at node 1
and nodes 2 and 3 are fixed. At the constant initial temperature
Ι↓  and loading 0F < , stress vanishes. If the slab is heated to
the constant temperature 2Ι↓ , what is the required force F  to
have 1 0Xu < ? Material properties E , µ ,   and thickness t
of the slab are constants.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed
are (formulae collection)
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in which Ι Ι ΙΧ < , ↓  is the difference between temperature at the deformed and initial geometries.

2p Approximation is the first thing to be considered. As the origin of the material xy , coordinate
system is placed at node 1 and the axes are aligned with the axes of the structural XY , coordinate
system

1(1 ) X
xu u
L

< , , 0v < ,  and Ι ΙΧ < ν  (constant).

2p When the approximations are substituted there, virtual work density (composed of the internal
and coupling parts) simplifies to
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Virtual work expression is integral of the density expression over the domain occupied by the ele-
ment.  Here,  virtual  work  density  is  constant  so  that  it  is  enough  to  multiply  by  the  area.  Virtual
work expressions of element 1 and 2 (point force) become
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2
1XW u Fχ χ< .

2p Virtual work expression of the structure 1 2W W Wχ χ χ< ∗ ,  principle  of  virtual  work,  and  the
fundamental lemma of variation calculus imply the equilibrium equation
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Displacement vanishes with the force (this is also the horizontal constraint force when the node is
fixed)
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