Omfattning: 5

Tidtabel: 08.01.2019 - 23.05.2019

Ansvarslärare (är i kraft 01.08.2018-31.07.2020): 

Ville Havu, Ilja Makkonen (2018-2019)

Ville Havu, Emppu Salonen (2019-2020)

Kontaktuppgifter till kursens personal (gäller denna kursomgång): 

Lecturers:

Ilja Makkonen (first half)
Ville Havu (second half)

Course assistant: Jouko Lehtomäki


Undervisningsperiod (är i kraft 01.08.2018-31.07.2020): 

III - V Spring (2018-2019, 2019-2020)

Lärandemål (är i kraft 01.08.2018-31.07.2020): 

After completing the course, the student

  • can identify and describe basic models and simulation techniques that are frequently used to solve physical problems in various fields of computational physics, such as quantum, statistical, condensed matter or materials physics,
  • is familiar with the basic operating principles of pseudo random number generators and able to choose one and use it appropriately
  • can apply importance sampling Monte Carlo simulations and the Metropolis algorithm for numerical integration and sampling in physical applications
  • can describe the basic principles of stochastic simulations in statistical physics and apply them to select models and problems
  • can describe the basic principles of molecular dynamics simulations and implement and run simple simulations
  • can describe and categorize models and techniques used in computational single-particle and many-body quantum physics
  • can implement a solver for a physical problem governed by a partial differential equation
  • can choose between different spatial discretizations, methods in linear algebra and time propagation schemes based on the physical properties of the underlying problem
  • can describe modern computing architectures and programming tools for parallel high-performance computing

Innehåll (är i kraft 01.08.2018-31.07.2020): 

Familiarizing with various models appearing in computational quantum, statistical condensed matter and materials physics. Random number generators, stochastic simulation techniques, importance sampling Monte Carlo and the Metropolis algorithm. Molecular dynamics simulations. Basis function and finite-difference discretizations of equations arising in physics, direct and iterative methods of linear algebra to solve discretized equations, explicit and implicit time propagation schemes for time-dependent physical problems.

Metoder, arbetssätt och bedömningsgrunder (är i kraft 01.08.2018-31.07.2020): 

Assignments

Närmare information om bedömningsgrunderna och -metoderna och om hur den studerande kan ta del av bedömningen (gäller denna kursomgång): 

Grade: 70% from the weekly homework, 30% project

Arbetsmängd (är i kraft 01.08.2018-31.07.2020): 

Contact teaching: 48 hrs
Independent work: 85 hrs

Preciserad belastningsberäkning (gäller denna kursomgång): 

contact teaching 48 hrs (24 hrs lectures + 24 hrs exercises = 12 weeks with 2 hrs lectures and 2 hrs exercises each), independent work 82 hrs

Studiematerial (är i kraft 01.08.2018-31.07.2020): 

Lecture notes and additional supporting material

Ersättande prestationer (är i kraft 01.08.2018-31.07.2020): 

This course will replace the course Tfy-3.4423

Kursens webbplats (är i kraft 01.08.2018-31.07.2020): 

https://mycourses.aalto.fi/course/search.php?search=PHYS-E0412

Bedömningsskala (är i kraft 01.08.2018-31.07.2020): 

0-5

Anmälning (är i kraft 01.08.2018-31.07.2020): 

registration via WebOodi.

Närmare information om tidtabellen (gäller denna kursomgång): 

Lectures: Tuesdays at 10:15-12:00, Y229a, Otakaari 1
Exercise sessions: Thursdays at 10:15-12:00, Maari B, Sähkömiehentie 3

Opening lecture: Tuesday 8 January
First exercise session: Thursday 10 January



Beskrivning

Anmälning och tillläggsinformation