Please note! Course description is confirmed for two academic years, which means that in general, e.g. Learning outcomes, assessment methods and key content stays unchanged. However, via course syllabus, it is possible to specify or change the course execution in each realization of the course, such as how the contact sessions are organized, assessment methods weighted or materials used.

LEARNING OUTCOMES

After completing the course students will be able to:
1. build kinetic simulation models of the cell growth and product formation
2. connect different models together to build a bioprocess model
3. define parameters for kinetic and static bioprocess models
4. create experimental designs for bioprocess screening and optimization tests
5. create response surface models and define optimum variable values thereof
6. create multivariate models from various data sources including e.g. raw materials, cultivation conditions, product properties, expression data
7. utilize certain chemometric modelling approaches for bioprocess estimation and simulation simulations
8. design simple experiments to find out certain kinetic and optimization parameters of a bioprocess
9. estimate the model validity in various cases

Credits: 5

Schedule: 04.09.2024 - 17.10.2024

Teacher in charge (valid for whole curriculum period):

Teacher in charge (applies in this implementation): Tero Eerikäinen

Contact information for the course (applies in this implementation):

CEFR level (valid for whole curriculum period):

Language of instruction and studies (applies in this implementation):

Teaching language: English. Languages of study attainment: English

CONTENT, ASSESSMENT AND WORKLOAD

Content
  • valid for whole curriculum period:

    Bioprocess behavior in different modes and modeling principles combined to experimental works. Computer-aided bioprocess modeling and simulation. Creating bioprocess models in MATLAB and Simulink environment. Linear and non-linear estimation of the kinetic parameters for types and models. Multivariate modeling possibilities and limitations. Response surface modeling, principal component analysis, neural networks. Use of models as a part of Quality control as process analytical technique. Creating a bioprocess simulation model and validating model parameters.

Assessment Methods and Criteria
  • valid for whole curriculum period:

    Lectures, computer exercises, assignments and independent studying

Workload
  • valid for whole curriculum period:

    Total 135 h = 5cr
    Lectures and exercises 24 h, 2x2 h per week
    Assignments 47 h
    Independent studying 60 h
    Exam 4 h

DETAILS

Study Material
  • valid for whole curriculum period:

    Material to be announced

Substitutes for Courses
Prerequisites
SDG: Sustainable Development Goals

    9 Industry, Innovation and Infrastructure

    12 Responsible Production and Consumption

FURTHER INFORMATION

Further Information
  • valid for whole curriculum period:

    Teaching Language: English

    Teaching Period: 2024-2025 Autumn I
    2025-2026 Autumn I