Skip to main content
MyCourses MyCourses
  • Schools
    School of Arts, Design, and Architecture (ARTS) School of Business (BIZ) School of Chemical Engineering (CHEM) –sGuides for students (CHEM) – Instructions for report writing (CHEM) School of Electrical Engineering (ELEC) School of Engineering (ENG) School of Science (SCI) Language Centre Open University Library Aalto university pedagogical training program UNI (exams) Sandbox
  • CORONAVIRUS INFO
    Koronavirus - tietoa opiskelijalle Coronavirus - information for students Coronavirus - information för studerande Corona help for teachers
  • Service Links
    MyCourses - Instructions for Teachers - Teacher book your online session with a specialist - Digital tools for teaching - Personal data protection instructions for teachers - Instructions for Students - Workspace for thesis supervision Sisu Into portal for students Courses.aalto.fi Library Services - Resourcesguides - Imagoa / Open science and images IT Services Campus maps - Search spaces and see opening hours Restaurants in Otaniemi ASU Aalto Student Union Aalto Marketplace
  • ALLWELL?
    Study Skills Support for Studying Starting Point of Wellbeing About AllWell? study well-being questionnaire
  •   ‎(en)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Hi guest! (Log in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

CS-E4890 - Deep Learning D, Lecture, 1.3.2022-27.5.2022

This course space end date is set to 27.05.2022 Search Courses: CS-E4890

  1. Home
  2. Courses
  3. School of Science
  4. department of...
  5. cs-e4890 - de...
 
Syllabus

General

  • General

    General

    The information in SISU may be outdated. The up-to-date information is on these web pages. Course slack: deeplearn22-aalto.slack.com

    Contact information
    • If you have questions regarding the course, please send an email to cs-e4890@aalto.fi .

    Course description

    Machine learning with deep neural networks, programming using PyTorch. After the course, the student understands the basic principles of deep learning: multi-layer perceptrons, convolutional and recurrent neural networks; stochastic gradient descent and backpropagation; means to prevent overfitting. The student understands methods for supervised and unsupervised deep learning. The student knows modern neural architectures used for image classification, time series modeling and natural language processing. The student has experience on training deep learning models in PyTorch.

    Assessment
    Returned assignments and an exam.

    Prerequisites
    • NB: good knowledge of Python and numpy
    • linear algebra: vectors, matrices, eigenvalues and eigenvectors
    • basics of probability and statistics: sum rule, product rule, Bayes' rule, expectation, mean, variance, maximum likelihood, Kullback-Leibler divergence
    • basics of machine learning (recommended): supervised and unsupervised learning, overfitting

    Course contents
    • Introduction to deep learning
    • Optimization methods
    • Regularization methods
    • Convolutional neural networks
    • Recurrent neural networks
    • Attention-based models
    • Graph neural networks
    • Deep learning with few labeled examples
    • Deep autoencoders
    • Flow-based and autoregressive generative models
    • Generative adversarial networks
    • Unsupervised learning via denoising

     Diploma 2021
    • icon for activity ForumAnnouncements Forum

Course home

Course home

Next section

Course schedule►
Skip Upcoming events
Upcoming events
Loading There are no upcoming events
Go to calendar...
  • CS-E4890 - Deep Learning D, Lecture, 1.3.2022-27.5.2022
  • Sections
  • General
  • Course schedule
  • Assignments
  • Exercise sessions
  • Grading policy
  • Lecture slides and notes
  • Home
  • Calendar
  • Learner Metrics

Aalto logo

Tuki / Support
  • MyCourses help
  • mycourses(at)aalto.fi
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Hi guest! (Log in)
  • Schools
    • School of Arts, Design, and Architecture (ARTS)
    • School of Business (BIZ)
    • School of Chemical Engineering (CHEM)
    • –sGuides for students (CHEM)
    • – Instructions for report writing (CHEM)
    • School of Electrical Engineering (ELEC)
    • School of Engineering (ENG)
    • School of Science (SCI)
    • Language Centre
    • Open University
    • Library
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • CORONAVIRUS INFO
    • Koronavirus - tietoa opiskelijalle
    • Coronavirus - information for students
    • Coronavirus - information för studerande
    • Corona help for teachers
  • Service Links
    • MyCourses
    • - Instructions for Teachers
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Personal data protection instructions for teachers
    • - Instructions for Students
    • - Workspace for thesis supervision
    • Sisu
    • Into portal for students
    • Courses.aalto.fi
    • Library Services
    • - Resourcesguides
    • - Imagoa / Open science and images
    • IT Services
    • Campus maps
    • - Search spaces and see opening hours
    • Restaurants in Otaniemi
    • ASU Aalto Student Union
    • Aalto Marketplace
  • ALLWELL?
    • Study Skills
    • Support for Studying
    • Starting Point of Wellbeing
    • About AllWell? study well-being questionnaire
  •   ‎(en)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎