Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - MyCourses instructions for Teachers - Anvisningar för studerande - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Vägledning och stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

ELEC-E8125 - Reinforcement learning D, Lecture, 5.9.2022-30.11.2022

This course space end date is set to 30.11.2022 Search Courses: ELEC-E8125

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. elektroteknik...
  5. elec-e8125 - ...
 
Kursens beskrivning
 

Allmänt

  • Allmänt

    Allmänt

    Overview

    The course provides an overview of mathematical models and algorithms behind optimal decision making in time-series systems. The course focus is on optimal decision making and control, reinforcement learning, and decision making under uncertainty.

    Practical matters

    Lecturer: Joni Pajarinen.

    Teaching assistants (TAs): Yi Zhao, Aleksi Ikkala, Wenshuai Zhao, Nikita Kostin, Ali Khoshvishkaie, Jifei Deng, Mohammadreza Nakhaei.

    • The reinforcement learning lecture will be organized in person this year.
      • Location: Maarintie 8, AS1
      • Time: Tuesdays 14:15-16:00 (Period I, II)
      • Although in person participation is encouraged for the full lecture experience lectures will be also recorded and can be watched afterwards
    • Grading Scale: 0-5
      • 7 individual assignments (60%)
      • 1 project work, in groups (max. 2 students) (20%)
      • Quizzes (due before lecture) (20 %)
    • Exercise sessions will be given twice a week. Attendance is optional.
      • (Remotely) Mondays 12.15–14.00, Zoom Link (links will be given during sessions)
      • (In person) Wednesdays 10.15–12.00, Maarintie 8, AS3 Saab Space
    • Please join the slack channel to receive the latest updates and ask questions about the exercises.  Please use your Aalto account for registering to Slack. Notice that, we will use the slack channel as the main place to answer questions about the exercises.
    • Each Student has 3 days in total for late submissions.


    Schedule




    Week Lecture Lecture Date Reading Events Deadline 
    W36 L1 Course Overview Tue, 6.9 no readings Ex1 (6.9) -
    W37 L2 Markov decision processes Tue, 13.9 Sutton & Barto, chapters 2-2.3, 2.5-2.6, 3-3.8 Ex2(13.9) -
    W38 L3 RL in discrete domains Tue, 20.9 Sutton & Barto Ch. 5-5.4, 5.6, 6-6.5 Ex3(20.9) Ex1 (19.9)
    W39 L4 Function approximation Tue, 27.9 Sutton & Barto Ch. 9-9.3, 10-10.1 Ex4(27.9) Ex2(26.9)
    W40 L5 Policy gradient Tue, 4.10 Sutton & Barto, Ch. 13-13.3 Ex5(4.10) Ex3(3.10)
    W41 L6 Actor-critic Tue 11.10 Sutton & Barto, Ch. 13.5, 13.7 Ex6(11.10) Ex4(10.10)
    W42 No Lecture Tue, 18.10
    W43 L7 Model-based RL Tue, 25.10 Sutton & Barto, Ch. 8 - 8.2

    Ex5(24.10)
    W44 L8 Interleaved learning and planning Tue, 1.11 Sutton & Barto, Ch. 8 - 8.2  Proj (1.11)
    W45 L9 Exploration and exploitation Tue, 8.11

    1) Sutton & Barto, Ch. 2.7, 8.9 - 8.11 and 2) Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on Thompson sampling. Foundations and Trends in Machine Learning, 11(1), 1-96. https://web.stanford.edu/~bvr/pubs/TS_Tutorial_FnT.pdf Section 2, 3, 4


    Ex7(8.11) Ex6(7.11)
    W46 L10 Guest lecture (Aidan Scannell). Model-based reinforcement learning under uncertainty: the importance of knowing what you don't know
    Tue, 15.11
    W47 L11 Partially observable MDPs Tue, 22.11

    1) Anthony Cassandra, POMDP tutorial, http://www.pomdp.org/tutorial/, steps from "Brief Introduction to MDPs" until "Background on POMDPs" and 2) Partially Observable Markov Decision Processes in Robotics: A Survey. https://arxiv.org/pdf/2209.10342 Sections II.A, III.B, III.C

    Ex7(21.11)
    W48 No Lecture Tue, 29.11 Project (12.12)

    Who to contact

    Usually, if you need help with the exercises or project work, you can put your questions in the corresponding slack channel or attend the exercise session. But if you need to contact TAs in person, here is the list:

    Ex/Proj    TAs
    Ex1Aleksi, Yi
    Ex2Jifei, Wenshuai
    Ex3Ali, Nikita
    Ex4Jifei, Yi
    Ex5Ali, Aleksi
    Ex6Mohammadreza, Wenshuai
    Ex7Mohammadreza, Yi
    ProjNikita

    If you have other questions (such as illness or military service, etc), you can directly contact Prof. Joni Pajarinen.


    • icon for activity
      ForumAnnouncements Forum

Course home

Course home

Nästa sektion

Lectures►
Hoppa över Kommande händelser
Kommande händelser
Laddar
Sitehändelse MyCourses maintenance, service out of use
Monday, 12 June, 10:00 » 17:00

Gå till Kalender
  • ELEC-E8125 - Reinforcement learning D, Lecture, 5.9.2022-30.11.2022
  • Sektioner
  • Allmänt
  • Lectures
  • Assignments
  • Project
  • Resources
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - MyCourses instructions for Teachers
    • - Anvisningar för studerande
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Vägledning och stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎