Enrolment options

Please note! Course description is confirmed for two academic years, which means that in general, e.g. Learning outcomes, assessment methods and key content stays unchanged. However, via course syllabus, it is possible to specify or change the course execution in each realization of the course, such as how the contact sessions are organized, assessment methods weighted or materials used.

LEARNING OUTCOMES

The course is intended to provide the student with the basics of applying data analytics in accounting. After completing the course, students will be able to:

  • Gain a managerial overview of the potential uses of data analytics in accounting contexts
  • Extract, cleanse, and transform heterogeneous data into machine-readable form
  • Analyze data to generate information for strategic and operational decision-making
  • Understand the potential and pitfalls of machine learning techniques
  • Use Python programming language and implement Python modules for data analysis

Credits: 6

Schedule: 28.02.2022 - 13.04.2022

Teacher in charge (valid for whole curriculum period):

Teacher in charge (applies in this implementation): Jukka Sihvonen

Contact information for the course (applies in this implementation):

CEFR level (valid for whole curriculum period):

Language of instruction and studies (applies in this implementation):

Teaching language: English. Languages of study attainment: English

CONTENT, ASSESSMENT AND WORKLOAD

Content
  • valid for whole curriculum period:

    The course is an introduction to data analysis with an emphasis on the concepts and techniques most relevant to accounting analytics. The secondary aim of this course is to acquaint students with Python programming language and its rich ecosystem for data analytics. The general topics of the course are:

    • Handling large unstructured datasets
    • Regression and classification (machine learning)
    • Prediction: framework, applications, and evaluation

    To achieve these learning objectives, a combination of lectures, online training, in-class exercises, and empirical assignments will be utilized.

Assessment Methods and Criteria
  • valid for whole curriculum period:

    • Assignments
    • Lecture diary
    • Course exam

Workload
  • valid for whole curriculum period:

    • Lectures, tutorials, and exercises
    • Assignments and learning self-reflections
    • Exam
    • Independent work

DETAILS

Study Material
  • valid for whole curriculum period:

    • Wes McKinney (2017). Python for Data Analysis, 2nd Ed. O Reilly Media
    • Online study resources defined by the instructor
    • Material distributed by the instructor

Substitutes for Courses
Prerequisites

FURTHER INFORMATION

Further Information
  • valid for whole curriculum period:

    It is recommended to bring your own laptop to the lectures. Work with your own laptop during the course if possible.

    Course is open for BIZ students only in 2020-21.


    Teaching Period:

    2020-2021 Spring IV

    2021-2022 Spring IV


    Course Homepage: https://mycourses.aalto.fi/course/search.php?search=ABL-E1300


    Registration for Courses: In the academic year 2021-2022, registration for courses will take place on Sisu (sisu.aalto.fi) instead of WebOodi.

    Please see Sisu for the registration dates.


    If more students have enrolled by the enrolment deadline than can be accepted on the course, priority will be given to students based on their study right: 1. Accounting MSc students 2. BIZ exchange students 3. Bachelor's students in Accounting who have completed more than 150 cr 4. other BIZ MSc students 5. BIZ Bachelor's students in other majors who have completed more than 150 cr

Guests cannot access this workspace. Please log in.