Operations Management MLI21C617

"Operations may not run the world, but it makes the world run"

Lecturer: Misa Bakajic

LECTURE 8 Inventory Management

Recap

1. Supply chain management focuses on serving needs of customer
2. Containers are essential for global trade
3. Supply chain management is all about relationships
4. Supply chain management balances sourcing/procurement and demand
5. Bullwhip effect is the mismatch between inventory and demand

The dual nature of inventories

Inventory as a Buffer for supply and demand

Working definition of inventory

"the accumulation of materials, customers or information as they flow through processes or networks" (Slack at al. 2022)

Inventory turn rate

- Inventory turnover shows how many times inventory replenishes relative to cost of goods sold (COGS) in each period
- Shows how efficiently a company uses its inventory
- Lower inventory turnover ratio may be a sign of weak sales or excess inventory
- Higher ratio signals strong sales but may also indicate inadequate inventory stocking
- Useful for comparing similar companies (e.g. Zara vs H\&M)
Inventory Turnover Rate = Cost of Goods Sold (COGS) / Average Inventory

Inventory Turn - Problem

An investor is looking at three athletics companies and trying to figure out their inventory management efficiency. They gathered the information below and wish to calculate their inventory turnover.

-Company A (Sport Flex):

- Cost of Goods Sold (COGS) for year: \$1,200,000
- Beginning Inventory: \$200,000
- Ending Inventory: \$300,000

-Company B (Swift Sneakers):

- COGS for the year: \$800,000
- Beginning Inventory: $\$ 100,000$
- Ending Inventory: \$150,000
-Company C (Peak Performance):
- COGS for the year: \$1,500,000
- Beginning Inventory: \$500,000
- Ending Inventory: \$400,000

Step 1: Calculate Average Inventory:

We can use simple average method for this example:
Avg. Inventory $=($ Beginning Inventory + Ending Inventory) $/ 2$
Avg Inventory $=(\$ 200,000+\$ 300,000) / 2$
Average Inventory $=\$ 250,000$
Step 2: Calculate Inventory Turnover Rate:
Inventory Turnover Rate = COGS / Average Inventory
Inventory Turnover Rate $=\$ 1,200,000 / \$ 250,000$
Inventory Turnover Rate $=4.8$
Company B (Swift Sneakers):
1.Avg Inventory $=(\$ 100,000+\$ 150,000) / 2=\$ 125,000$
2.Inventory Turnover Rate $=\$ 800,000 / \$ 125,000=6.4$

Company C (Peak Performance):
1.Avg Inventory $=(\$ 500,000+\$ 400,000) / 2=\$ 450,000$
2.Inventory Turnover Rate $=\$ 1,500,000 / \$ 450,000=3.33$

Order penetration point

Customer service analysis for a consumer product

Types of inventories

	INVENTORIES		
Process, operation, or supply network	Physical Inventories	Queues of Customers	Information in Databases
Hotel	Food items, drinks, toilet items, etc.	At check-in and check-out	Customer details, loyalty card holders, catering suppliers
Hospital	Dressings, disposable equipment, blood	Patients on waiting list, patients in beds prior to surgery, recovery wards	Patient medical records
Credit card application process	Blank cards, statements	Customers waiting on the phone	Customer's credit and other personal info
Computer manufacturer	Components for assembly, packaging, finished goods	Customers waiting for delivery of their computer	Customer shipping details, supplier information

Inventory impact on return on assets

Cycle inventory: Example of a bakery

Average inventory

The typical amount or value of inventory a company holds over a specific period

anamesesty School of Business

EOQ (Economic Order Quantity)

Holdings costs / Carrying costs

Expenses a business incurs for keeping unsold inventory in storage

Q: What expenses contribute to holding costs

Batch quantity options

Large order to satisfy a long interval of demand

10000 pieces

Smaller orders to satisfy short intervals of demand

Order costs

Expenses associated with placing and receiving new inventory from suppliers and can be fixed or variable

Fixed order costs example: Warehouse capita costs

Variable order costs example: Delivery of single order to location

Two alternative inventory plans with different order quantities (Q)

Economic Order Quantity (EOQ)

- Minimize the sum of inventory holding \& ordering costs
- Inventory holding costs: 0.5 * D * c_{h}
- Ordering costs: D/Q * c_{0}
- Total cost $=\mathrm{D} / \mathrm{Q}{ }^{*} \mathrm{c}_{\mathrm{o}}+0.5^{*} \mathrm{D} * \mathrm{c}_{\mathrm{h}}$
- We get EOQ through differentiating

$$
\begin{aligned}
& c_{o}=\text { Order cost per order } \\
& D=\text { Demand } \\
& c_{h}=\text { Inventory holding cost per unit } \\
& Q=\text { ordered quantity } \\
& \hline
\end{aligned}
$$ total cost ...

- Therefore,

$$
\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{C}_{0} \mathrm{D}}{\mathrm{C}_{\mathrm{h}}}}
$$

EOQ worked example

JLR uses about 60000 pairs of bumpers (front bumper and rear
bumper) per year for Jaguar's models sold in the UK. The bumpers are ordered from a supplier in India. It costs $€ 3.00$ to keep one pair of bumpers in inventory for one month, and it costs $€ 25$ to place an order. A pair of bumpers costs $€ 150.00$.
What would be the EOQ for the number of pairs of bumpers?
Demand: D = 60000

$$
\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{C}_{0} \mathrm{D}}{\mathrm{C}_{\mathrm{h}}}}
$$

Ordering cost: $\mathrm{C}_{\mathrm{o}}=25$ ($€$ /order)
Inventory holding cost: $\mathrm{C}_{\mathrm{h}}=12^{*} 3=36$ ($€$ /unit/year)
$\mathrm{EOQ}=\sqrt{\frac{2 C O D}{C_{h}}}=\sqrt{\frac{2 * 25 * 60000}{36}}=288.7=289$ (pairs of bumpers).
Answer: Every time JLR places an order, it should order 289 pairs of bumpers
A!

EOQ worked example 2

Demand for a tricycle at Stockmann is 500 units per month. Stockmann incurs a fixed order placement cost of $10 €$ each time an order is placed. The
 tricycle costs $30 €$ to purchase from a supplier and has a holding cost of 20 percent. Evaluate the number of tricycles that the store manager should order in each replenishment lot?
$D=500$ * 12 = 6000 (tricycles/year)

$$
\mathrm{EOQ}=\sqrt{\frac{2 \mathrm{C}_{\mathrm{C}} \mathrm{D}}{\mathrm{C}_{\mathrm{h}}}}
$$

$\mathrm{C}_{\mathrm{o}}=10$ ($€$ /order)
$\mathrm{C}_{\mathrm{h}}=0.2$ * $30=6.00$ ($€ /$ unit/year)
EOQ $=\sqrt{\frac{2 * 10 * 6000}{6}}=\sqrt{20000}=141.4$ (tricycles)
Answer: Stockmann should order 141 tricycles each time it places an order.

Graphical representation of economic order quantity (EOQ)

Criticism of EOQ approach

1. Assumptions included in EOQ formula are simplistic
2. "Real" cost of stock in operations are not assumed in EOQ
3. EOQ are really descriptive should not be prescriptive
4. Should cost minimization be priority for inventory management?

True costs of stock holding impact on EOQ

A!

Single Period Stochastic Inventory Models

These inventory models, e.g. Newsvendor, have the common objective of properly balancing the cost of:

Shortage vs. Overage

= having ordered too few products vs. having ordered too much

The Nature of Uncertainty

- Let's represent demand as:

$$
D=D_{\text {deterministic }}+D_{\text {random }}
$$

- If the $D_{\text {random }}$ is small compared to $D_{\text {deterministic }}$, deterministic inventory models will be satisfactory \rightarrow use e.g. EOQ
- Otherwise, randomness of demand must be explicitly accounted for in the model \rightarrow stochastic models needed

Newsvendor model summary

Demand Level	$\mathbf{2 0 0}$	$\mathbf{4 0 0}$	$\mathbf{6 0 0}$	$\mathbf{8 0 0}$
Probability	0.2	0.3	0.4	0.1
Order of 200	1000	1000	1000	1000
Order of 400	400	2000	2000	2000
Order of 600	-200	1400	3000	3000
Order of 800	-800	800	4000	4000

If we order 200 expected profit $=(1000 * 0.2)+(1000 * 0.3)+(1000 * 0.4)+(1000 * 0.1)=1000$

If we order 400 expected profit $=(400 * 0.2)+(2000 * 0.3)+(2000 * 0.4)+(2000 * 0.1)=1680$

If we order 600 expected profit $=(-200 * 0.2)+(1400 * 0.3)+(3000 * 0.4)+(3000 * 0.1)=1880$
A! If we order 800 expected profit $=(-800 * 0.2)+(800 * 0.3)+(4000 * 0.4)+(3000 * 0.1)=1440$
anamesesy School of Business

Timing of order placement

Re-order point (ROP)

ROP is a stock level trigger for replenishing inventory. It helps businesses avoid stockouts and optimize their ordering cycles. There are two main factors that influence the reorder point:

1. Lead Time: This is the time it takes for a new order to be placed and received. It includes factors like supplier processing time, shipping time, and any customs procedures.
2. Demand Rate: This refers to the average rate at which you sell the item.

Re-order level (ROL) and re-order point (ROP) are derived from the order lead time and demand rate

Simple ROP formula
ROP = (Average Daily Sales * Days of Average Lead Time) + Safety Stock

Safety stock (s) helps to avoid stockouts when demand and/or order lead time are uncertain

Probability distributions for order lead time and demand rate combine to give the lead-time usage distribution

Figure 13.12

A periodic review approach to order timing with probabilistic demand and lead time

A!
Figure 13.13

The two-bin and three-bin systems of re-ordering

Inventory priorities using ABC system

Most of the value is generated from a small number of products (Pareto law of 20-80)

Firms therefore categorize inventory according to usage value

Usage value = usage rate * individual value

Class A items - high usage value
Class B items - medium usage value
A! Class C items - low usage value

Pareto curve for items in a warehouse

Figure 13.15

Perpetual inventory

Stocks should be updated every time a change occurs

New stock level $=($ Opening stock level + Receipts in - Dispatches out $)$

Inventory reality

System inventory may be different than actual inventory due to:

- Damage, theft, etc.
- Inaccurate data entry
- Wrong location on "the rack"
- Delays in inventory update

References

Slack, N., Brandon-Jones, A. \& Burgess, N. 2022. Operations management. Tenth edition. Harlow, England ; New York: Pearson.

Kiitos aalto.fi

